File size: 1,825 Bytes
e870192
 
ee17438
 
 
 
 
 
 
e870192
ee17438
e2eb659
ee17438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: cc-by-nc-sa-4.0
datasets:
- wikipedia
- cc100
language:
- ja
library_name: transformers
pipeline_tag: fill-mask
---

Japanese BERT-base (Nothing + Unigram)
===

## How to load the tokenizer
Please download the dictionary file for Nothing + Unigram from [our GitHub repository](https://github.com/hitachi-nlp/compare-ja-tokenizer/blob/public/data/dict/nothing_unigram.json).
Then you can load the tokenizer by specifying the path of the dictionary file to `dict_path`.

```python
from typing import Optional

from tokenizers import Tokenizer, NormalizedString, PreTokenizedString
from tokenizers.processors import BertProcessing
from tokenizers.pre_tokenizers import PreTokenizer
from transformers import PreTrainedTokenizerFast

# load a tokenizer
dict_path = /path/to/nothing_unigram.json
tokenizer = Tokenizer.from_file(dict_path)
tokenizer.post_processor = BertProcessing(
    cls=("[CLS]", tokenizer.token_to_id('[CLS]')),
    sep=("[SEP]", tokenizer.token_to_id('[SEP]'))
)

# convert to PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast(
    tokenizer_object=tokenizer,
    unk_token='[UNK]',
    cls_token='[CLS]',
    sep_token='[SEP]',
    pad_token='[PAD]',
    mask_token='[MASK]'
)
```

```python
# Test
test_str = "γ“γ‚“γ«γ‘γ―γ€‚η§γ―ε½’ζ…‹η΄ θ§£ζžε™¨γ«γ€γ„γ¦η ”η©Άγ‚’γ—γ¦γ„γΎγ™γ€‚"
tokenizer.convert_ids_to_tokens(tokenizer(test_str).input_ids)
# -> ['[CLS]','こん','に','け','は','。','私','は','ε½’ζ…‹','η΄ ','解析','器','に぀いて','η ”η©Ά','をして','います','。','[SEP]']
```

## How to load the model
```python
from transformers import AutoModelForMaskedLM
model = AutoModelForMaskedLM.from_pretrained("hitachi-nlp/bert-base_nothing-unigram")
```


**See [our repository](https://github.com/hitachi-nlp/compare-ja-tokenizer) for more details!**