justheuristic
commited on
Commit
·
08ba7c1
1
Parent(s):
0784a51
Create check_perplexity.ipynb
Browse files- check_perplexity.ipynb +691 -0
check_perplexity.ipynb
ADDED
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"### Original GPT-J perlexity"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import torch\n",
|
17 |
+
"import torch.nn as nn\n",
|
18 |
+
"import torch.nn.functional as F\n",
|
19 |
+
"\n",
|
20 |
+
"from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise\n",
|
21 |
+
"import transformers\n",
|
22 |
+
"from tqdm.auto import tqdm\n",
|
23 |
+
"\n",
|
24 |
+
"\n",
|
25 |
+
"\n",
|
26 |
+
"model_name = \"EleutherAI/gpt-j-6B\"\n",
|
27 |
+
"gpt = transformers.AutoModelForCausalLM.from_pretrained(model_name)\n",
|
28 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 11,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"device = 'cuda' if torch.cuda.is_available else 'cpu'\n",
|
38 |
+
"gpt.to(device).train(False);"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 4,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [
|
46 |
+
{
|
47 |
+
"name": "stderr",
|
48 |
+
"output_type": "stream",
|
49 |
+
"text": [
|
50 |
+
"Reusing dataset wikitext (/home/jheuristic/.cache/huggingface/datasets/wikitext/wikitext-2-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126)\n"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"data": {
|
55 |
+
"application/vnd.jupyter.widget-view+json": {
|
56 |
+
"model_id": "47f0459174da4ee2bf064c9ae81fdecd",
|
57 |
+
"version_major": 2,
|
58 |
+
"version_minor": 0
|
59 |
+
},
|
60 |
+
"text/plain": [
|
61 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
"metadata": {},
|
65 |
+
"output_type": "display_data"
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"source": [
|
69 |
+
"from datasets import load_dataset\n",
|
70 |
+
"data = load_dataset('wikitext', 'wikitext-2-v1')['test']"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 62,
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [
|
78 |
+
{
|
79 |
+
"data": {
|
80 |
+
"application/vnd.jupyter.widget-view+json": {
|
81 |
+
"model_id": "26cca02205624aafa740e55542ca2e6c",
|
82 |
+
"version_major": 2,
|
83 |
+
"version_minor": 0
|
84 |
+
},
|
85 |
+
"text/plain": [
|
86 |
+
" 0%| | 0/4358 [00:00<?, ?it/s]"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
"metadata": {},
|
90 |
+
"output_type": "display_data"
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"source": [
|
94 |
+
"\n",
|
95 |
+
"numerator, denominator = 0, 0\n",
|
96 |
+
"collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
|
97 |
+
"loader = torch.utils.data.DataLoader(data, batch_size=1, num_workers=0, shuffle=False)\n",
|
98 |
+
"\n",
|
99 |
+
"\n",
|
100 |
+
"with torch.no_grad(), torch.cuda.amp.autocast(), tqdm(loader) as progressbar:\n",
|
101 |
+
" for i, row in enumerate(progressbar):\n",
|
102 |
+
" if max(map(len, row['text'])) <= 1:\n",
|
103 |
+
" continue\n",
|
104 |
+
" batch = tokenizer(**row, truncation=False, return_tensors='pt')\n",
|
105 |
+
" batch = {k: v.cuda() for k, v in batch.items()}\n",
|
106 |
+
"\n",
|
107 |
+
" out = gpt.forward(**batch,)\n",
|
108 |
+
"\n",
|
109 |
+
" loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),\n",
|
110 |
+
" reduction='none')\n",
|
111 |
+
"\n",
|
112 |
+
" numerator += loss.sum().item()\n",
|
113 |
+
" denominator += len(loss)\n",
|
114 |
+
" progressbar.desc = f\"{numerator/denominator:.3f}\""
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 63,
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [
|
122 |
+
{
|
123 |
+
"data": {
|
124 |
+
"text/plain": [
|
125 |
+
"18.435175441788164"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
"execution_count": 63,
|
129 |
+
"metadata": {},
|
130 |
+
"output_type": "execute_result"
|
131 |
+
}
|
132 |
+
],
|
133 |
+
"source": [
|
134 |
+
"# test perplexity\n",
|
135 |
+
"import math\n",
|
136 |
+
"math.exp(numerator/denominator)"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "markdown",
|
141 |
+
"metadata": {},
|
142 |
+
"source": [
|
143 |
+
"### Quantized GPT-J Perplexity"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": 64,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"\n",
|
153 |
+
"import torch\n",
|
154 |
+
"import torch.nn as nn\n",
|
155 |
+
"from torch.cuda.amp import custom_fwd, custom_bwd\n",
|
156 |
+
" \n",
|
157 |
+
"from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise\n",
|
158 |
+
"import transformers\n",
|
159 |
+
"\n",
|
160 |
+
"\n",
|
161 |
+
"class DequantizeAndLinear(torch.autograd.Function):\n",
|
162 |
+
" \n",
|
163 |
+
" @staticmethod\n",
|
164 |
+
" @custom_fwd\n",
|
165 |
+
" def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,\n",
|
166 |
+
" absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):\n",
|
167 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
168 |
+
" ctx.save_for_backward(input, weights_quantized, absmax, code)\n",
|
169 |
+
" ctx._has_bias = bias is not None\n",
|
170 |
+
" return F.linear(input, weights_deq, bias)\n",
|
171 |
+
" \n",
|
172 |
+
" @staticmethod\n",
|
173 |
+
" @custom_bwd\n",
|
174 |
+
" def backward(ctx, grad_output: torch.Tensor):\n",
|
175 |
+
" assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]\n",
|
176 |
+
" input, weights_quantized, absmax, code = ctx.saved_tensors\n",
|
177 |
+
" # grad_output: [*batch, out_features]\n",
|
178 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
179 |
+
" grad_input = grad_output @ weights_deq\n",
|
180 |
+
" grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None\n",
|
181 |
+
" return grad_input, None, None, None, grad_bias\n",
|
182 |
+
"\n",
|
183 |
+
"\n",
|
184 |
+
"class FrozenBNBLinear(nn.Module):\n",
|
185 |
+
" def __init__(self, weight, absmax, code, bias=None):\n",
|
186 |
+
" assert isinstance(bias, nn.Parameter) or bias is None\n",
|
187 |
+
" super().__init__()\n",
|
188 |
+
" self.out_features, self.in_features = weight.shape\n",
|
189 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
190 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
191 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
192 |
+
" self.bias = bias\n",
|
193 |
+
" \n",
|
194 |
+
" def forward(self, input):\n",
|
195 |
+
" return DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)\n",
|
196 |
+
" \n",
|
197 |
+
" @classmethod\n",
|
198 |
+
" def from_linear(cls, linear: nn.Linear) -> \"FrozenBNBLinear\":\n",
|
199 |
+
" weights_int8, state = quantize_blockise_lowmemory(linear.weight)\n",
|
200 |
+
" return cls(weights_int8, *state, linear.bias)\n",
|
201 |
+
" \n",
|
202 |
+
" def __repr__(self):\n",
|
203 |
+
" return f\"{self.__class__.__name__}({self.in_features}, {self.out_features})\"\n",
|
204 |
+
" \n",
|
205 |
+
" \n",
|
206 |
+
"class FrozenBNBEmbedding(nn.Module):\n",
|
207 |
+
" def __init__(self, weight, absmax, code):\n",
|
208 |
+
" super().__init__()\n",
|
209 |
+
" self.num_embeddings, self.embedding_dim = weight.shape\n",
|
210 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
211 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
212 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
213 |
+
" \n",
|
214 |
+
" def forward(self, x, **kwargs):\n",
|
215 |
+
" with torch.no_grad():\n",
|
216 |
+
" # note: both quantuized weights and input indices are *not* differentiable\n",
|
217 |
+
" weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)\n",
|
218 |
+
" return F.embedding(x, weight_deq, **kwargs)\n",
|
219 |
+
" \n",
|
220 |
+
" @classmethod\n",
|
221 |
+
" def from_embedding(cls, embedding: nn.Embedding) -> \"FrozenBNBEmbedding\":\n",
|
222 |
+
" weights_int8, state = quantize_blockise_lowmemory(embedding.weight)\n",
|
223 |
+
" return cls(weights_int8, *state)\n",
|
224 |
+
" \n",
|
225 |
+
" def __repr__(self):\n",
|
226 |
+
" return f\"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})\"\n",
|
227 |
+
" \n",
|
228 |
+
" \n",
|
229 |
+
"def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):\n",
|
230 |
+
" assert chunk_size % 4096 == 0\n",
|
231 |
+
" code = None\n",
|
232 |
+
" chunks = []\n",
|
233 |
+
" absmaxes = []\n",
|
234 |
+
" flat_tensor = matrix.view(-1)\n",
|
235 |
+
" for i in range((matrix.numel() - 1) // chunk_size + 1):\n",
|
236 |
+
" input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()\n",
|
237 |
+
" quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)\n",
|
238 |
+
" chunks.append(quantized_chunk)\n",
|
239 |
+
" absmaxes.append(absmax_chunk)\n",
|
240 |
+
" \n",
|
241 |
+
" matrix_i8 = torch.cat(chunks).reshape_as(matrix)\n",
|
242 |
+
" absmax = torch.cat(absmaxes)\n",
|
243 |
+
" return matrix_i8, (absmax, code)\n",
|
244 |
+
"\n",
|
245 |
+
"\n",
|
246 |
+
"def dummify(model, adapter_dim: int = 0):\n",
|
247 |
+
" for module in list(model.modules()):\n",
|
248 |
+
" for name, child in module.named_children():\n",
|
249 |
+
" if isinstance(child, nn.Linear):\n",
|
250 |
+
" print(name, child)\n",
|
251 |
+
" setattr(\n",
|
252 |
+
" module,\n",
|
253 |
+
" name,\n",
|
254 |
+
" FrozenBNBLinear(\n",
|
255 |
+
" weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),\n",
|
256 |
+
" absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
|
257 |
+
" code=torch.zeros(256),\n",
|
258 |
+
" bias=child.bias,\n",
|
259 |
+
" ),\n",
|
260 |
+
" )\n",
|
261 |
+
" elif isinstance(child, nn.Embedding):\n",
|
262 |
+
" setattr(\n",
|
263 |
+
" module,\n",
|
264 |
+
" name,\n",
|
265 |
+
" FrozenBNBEmbedding(\n",
|
266 |
+
" weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),\n",
|
267 |
+
" absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
|
268 |
+
" code=torch.zeros(256),\n",
|
269 |
+
" )\n",
|
270 |
+
" ),\n",
|
271 |
+
"\n",
|
272 |
+
"\n",
|
273 |
+
"def bnbfy_(model, adapter_dim: int = 0):\n",
|
274 |
+
" for module in list(model.modules()):\n",
|
275 |
+
" for name, child in module.named_children():\n",
|
276 |
+
" if isinstance(child, nn.Linear):\n",
|
277 |
+
" print(name, child)\n",
|
278 |
+
" setattr(module, name, FrozenBNBLinear.from_linear(child))\n",
|
279 |
+
" \n",
|
280 |
+
" elif isinstance(child, nn.Embedding):\n",
|
281 |
+
" print(name, child)\n",
|
282 |
+
" setattr(module, name, FrozenBNBEmbedding.from_embedding(child))"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 66,
|
288 |
+
"metadata": {},
|
289 |
+
"outputs": [],
|
290 |
+
"source": [
|
291 |
+
"class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):\n",
|
292 |
+
" def __init__(self, config):\n",
|
293 |
+
" print(\"MONKEYPATCH BLOCK\")\n",
|
294 |
+
" super().__init__(config)\n",
|
295 |
+
"\n",
|
296 |
+
" dummify(self.attn)\n",
|
297 |
+
" dummify(self.mlp)\n",
|
298 |
+
"\n",
|
299 |
+
"transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock\n",
|
300 |
+
"\n",
|
301 |
+
"\n",
|
302 |
+
"class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):\n",
|
303 |
+
" def __init__(self, config):\n",
|
304 |
+
" super().__init__(config)\n",
|
305 |
+
" dummify(self)\n",
|
306 |
+
"class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):\n",
|
307 |
+
" def __init__(self, config):\n",
|
308 |
+
" super().__init__(config)\n",
|
309 |
+
" dummify(self)\n"
|
310 |
+
]
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"cell_type": "code",
|
314 |
+
"execution_count": 67,
|
315 |
+
"metadata": {},
|
316 |
+
"outputs": [
|
317 |
+
{
|
318 |
+
"data": {
|
319 |
+
"application/vnd.jupyter.widget-view+json": {
|
320 |
+
"model_id": "1c98b9ebbf8d44d8b0bc422d4bfce21f",
|
321 |
+
"version_major": 2,
|
322 |
+
"version_minor": 0
|
323 |
+
},
|
324 |
+
"text/plain": [
|
325 |
+
"Downloading: 0%| | 0.00/0.98k [00:00<?, ?B/s]"
|
326 |
+
]
|
327 |
+
},
|
328 |
+
"metadata": {},
|
329 |
+
"output_type": "display_data"
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"data": {
|
333 |
+
"application/vnd.jupyter.widget-view+json": {
|
334 |
+
"model_id": "04bc6b612ff146308ec0b63fc15640f8",
|
335 |
+
"version_major": 2,
|
336 |
+
"version_minor": 0
|
337 |
+
},
|
338 |
+
"text/plain": [
|
339 |
+
"Downloading: 0%| | 0.00/5.75G [00:00<?, ?B/s]"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
"metadata": {},
|
343 |
+
"output_type": "display_data"
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"name": "stdout",
|
347 |
+
"output_type": "stream",
|
348 |
+
"text": [
|
349 |
+
"MONKEYPATCH BLOCK\n",
|
350 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
351 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
352 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
353 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
354 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
355 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
356 |
+
"MONKEYPATCH BLOCK\n",
|
357 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
358 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
359 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
360 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
361 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
362 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
363 |
+
"MONKEYPATCH BLOCK\n",
|
364 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
365 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
366 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
367 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
368 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
369 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
370 |
+
"MONKEYPATCH BLOCK\n",
|
371 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
372 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
373 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
374 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
375 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
376 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
377 |
+
"MONKEYPATCH BLOCK\n",
|
378 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
379 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
380 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
381 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
382 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
383 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
384 |
+
"MONKEYPATCH BLOCK\n",
|
385 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
386 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
387 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
388 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
389 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
390 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
391 |
+
"MONKEYPATCH BLOCK\n",
|
392 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
393 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
394 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
395 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
396 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
397 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
398 |
+
"MONKEYPATCH BLOCK\n",
|
399 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
400 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
401 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
402 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
403 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
404 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
405 |
+
"MONKEYPATCH BLOCK\n",
|
406 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
407 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
408 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
409 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
410 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
411 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
412 |
+
"MONKEYPATCH BLOCK\n",
|
413 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
414 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
415 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
416 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
417 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
418 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
419 |
+
"MONKEYPATCH BLOCK\n",
|
420 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
421 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
422 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
423 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
424 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
425 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
426 |
+
"MONKEYPATCH BLOCK\n",
|
427 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
428 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
429 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
430 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
431 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
432 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
433 |
+
"MONKEYPATCH BLOCK\n",
|
434 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
435 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
436 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
437 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
438 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
439 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
440 |
+
"MONKEYPATCH BLOCK\n",
|
441 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
442 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
443 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
444 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
445 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
446 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
447 |
+
"MONKEYPATCH BLOCK\n",
|
448 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
449 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
450 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
451 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
452 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
453 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
454 |
+
"MONKEYPATCH BLOCK\n",
|
455 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
456 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
457 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
458 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
459 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
460 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
461 |
+
"MONKEYPATCH BLOCK\n",
|
462 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
463 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
464 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
465 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
466 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
467 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
468 |
+
"MONKEYPATCH BLOCK\n",
|
469 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
470 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
471 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
472 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
473 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
474 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
475 |
+
"MONKEYPATCH BLOCK\n",
|
476 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
477 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
478 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
479 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
480 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
481 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
482 |
+
"MONKEYPATCH BLOCK\n",
|
483 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
484 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
485 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
486 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
487 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
488 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
489 |
+
"MONKEYPATCH BLOCK\n",
|
490 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
491 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
492 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
493 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
494 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
495 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
496 |
+
"MONKEYPATCH BLOCK\n"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"name": "stdout",
|
501 |
+
"output_type": "stream",
|
502 |
+
"text": [
|
503 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
504 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
505 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
506 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
507 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
508 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
509 |
+
"MONKEYPATCH BLOCK\n",
|
510 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
511 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
512 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
513 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
514 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
515 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
516 |
+
"MONKEYPATCH BLOCK\n",
|
517 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
518 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
519 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
520 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
521 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
522 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
523 |
+
"MONKEYPATCH BLOCK\n",
|
524 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
525 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
526 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
527 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
528 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
529 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
530 |
+
"MONKEYPATCH BLOCK\n",
|
531 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
532 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
533 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
534 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
535 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
536 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
537 |
+
"MONKEYPATCH BLOCK\n",
|
538 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
539 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
540 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
541 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
542 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
543 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
544 |
+
"MONKEYPATCH BLOCK\n",
|
545 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
546 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
547 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
548 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
549 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
550 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
551 |
+
"lm_head Linear(in_features=4096, out_features=50400, bias=True)\n"
|
552 |
+
]
|
553 |
+
}
|
554 |
+
],
|
555 |
+
"source": [
|
556 |
+
"config = transformers.GPTJConfig.from_pretrained(\"EleutherAI/gpt-j-6B\")\n",
|
557 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained(\"EleutherAI/gpt-j-6B\")\n",
|
558 |
+
"gpt = GPTJForCausalLM.from_pretrained(\"hivemind/gpt-j-6B-8bit\", low_cpu_mem_usage=True)"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"cell_type": "code",
|
563 |
+
"execution_count": 68,
|
564 |
+
"metadata": {},
|
565 |
+
"outputs": [],
|
566 |
+
"source": [
|
567 |
+
"device = 'cuda' if torch.cuda.is_available else 'cpu'\n",
|
568 |
+
"gpt.to(device).train(False);"
|
569 |
+
]
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"cell_type": "code",
|
573 |
+
"execution_count": 69,
|
574 |
+
"metadata": {},
|
575 |
+
"outputs": [
|
576 |
+
{
|
577 |
+
"name": "stderr",
|
578 |
+
"output_type": "stream",
|
579 |
+
"text": [
|
580 |
+
"Reusing dataset wikitext (/home/jheuristic/.cache/huggingface/datasets/wikitext/wikitext-2-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126)\n"
|
581 |
+
]
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"data": {
|
585 |
+
"application/vnd.jupyter.widget-view+json": {
|
586 |
+
"model_id": "bfbf0e20ed194d679d2f877085f679cb",
|
587 |
+
"version_major": 2,
|
588 |
+
"version_minor": 0
|
589 |
+
},
|
590 |
+
"text/plain": [
|
591 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
592 |
+
]
|
593 |
+
},
|
594 |
+
"metadata": {},
|
595 |
+
"output_type": "display_data"
|
596 |
+
}
|
597 |
+
],
|
598 |
+
"source": [
|
599 |
+
"from datasets import load_dataset\n",
|
600 |
+
"data = load_dataset('wikitext', 'wikitext-2-v1')['test']"
|
601 |
+
]
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"cell_type": "code",
|
605 |
+
"execution_count": 70,
|
606 |
+
"metadata": {},
|
607 |
+
"outputs": [
|
608 |
+
{
|
609 |
+
"data": {
|
610 |
+
"application/vnd.jupyter.widget-view+json": {
|
611 |
+
"model_id": "53d7e76934de4a1498306d49e4f41ad2",
|
612 |
+
"version_major": 2,
|
613 |
+
"version_minor": 0
|
614 |
+
},
|
615 |
+
"text/plain": [
|
616 |
+
" 0%| | 0/4358 [00:00<?, ?it/s]"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
"metadata": {},
|
620 |
+
"output_type": "display_data"
|
621 |
+
}
|
622 |
+
],
|
623 |
+
"source": [
|
624 |
+
"\n",
|
625 |
+
"numerator, denominator = 0, 0\n",
|
626 |
+
"collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
|
627 |
+
"loader = torch.utils.data.DataLoader(data, batch_size=1, num_workers=0, shuffle=False)\n",
|
628 |
+
"\n",
|
629 |
+
"\n",
|
630 |
+
"with torch.no_grad(), torch.cuda.amp.autocast(), tqdm(loader) as progressbar:\n",
|
631 |
+
" for i, row in enumerate(progressbar):\n",
|
632 |
+
" if max(map(len, row['text'])) <= 1:\n",
|
633 |
+
" continue\n",
|
634 |
+
" batch = tokenizer(**row, truncation=False, return_tensors='pt')\n",
|
635 |
+
" batch = {k: v.cuda() for k, v in batch.items()}\n",
|
636 |
+
"\n",
|
637 |
+
" out = gpt.forward(**batch,)\n",
|
638 |
+
"\n",
|
639 |
+
" loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),\n",
|
640 |
+
" reduction='none')\n",
|
641 |
+
"\n",
|
642 |
+
" numerator += loss.sum().item()\n",
|
643 |
+
" denominator += len(loss)\n",
|
644 |
+
" progressbar.desc = f\"{numerator/denominator:.3f}\""
|
645 |
+
]
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"cell_type": "code",
|
649 |
+
"execution_count": 71,
|
650 |
+
"metadata": {},
|
651 |
+
"outputs": [
|
652 |
+
{
|
653 |
+
"data": {
|
654 |
+
"text/plain": [
|
655 |
+
"18.427138288946292"
|
656 |
+
]
|
657 |
+
},
|
658 |
+
"execution_count": 71,
|
659 |
+
"metadata": {},
|
660 |
+
"output_type": "execute_result"
|
661 |
+
}
|
662 |
+
],
|
663 |
+
"source": [
|
664 |
+
"# test perplexity\n",
|
665 |
+
"import math\n",
|
666 |
+
"math.exp(numerator/denominator)"
|
667 |
+
]
|
668 |
+
}
|
669 |
+
],
|
670 |
+
"metadata": {
|
671 |
+
"kernelspec": {
|
672 |
+
"display_name": "py38",
|
673 |
+
"language": "python",
|
674 |
+
"name": "py38"
|
675 |
+
},
|
676 |
+
"language_info": {
|
677 |
+
"codemirror_mode": {
|
678 |
+
"name": "ipython",
|
679 |
+
"version": 3
|
680 |
+
},
|
681 |
+
"file_extension": ".py",
|
682 |
+
"mimetype": "text/x-python",
|
683 |
+
"name": "python",
|
684 |
+
"nbconvert_exporter": "python",
|
685 |
+
"pygments_lexer": "ipython3",
|
686 |
+
"version": "3.8.1"
|
687 |
+
}
|
688 |
+
},
|
689 |
+
"nbformat": 4,
|
690 |
+
"nbformat_minor": 2
|
691 |
+
}
|