--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_4_task_0_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-0-difficulty-4 results: - task: type: main-task name: main_task task-id: 0 difficulty-id: 4 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.26666667461395266 +/- 0.24423170630035398 name: Crash Count verified: true - type: extinguishing_trees value: 24.53333340883255 +/- 44.947390538539814 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 122.66666712760926 +/- 224.73694526974205 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.14166666939854622 +/- 0.24348229211157768 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.975 +/- 0.11180339887498947 name: Fire too Close to City verified: true - type: preparing_trees value: 818.2583312273025 +/- 623.9383921347651 name: Preparing Trees verified: true - type: preparing_trees_reward value: 818.2583312273025 +/- 623.9383921347651 name: Preparing Trees Reward verified: true - type: water_drop value: 12.241666674613953 +/- 5.139423095979583 name: Water Drop verified: true - type: water_pickup value: 11.858333373069764 +/- 5.146473016503177 name: Water Pickup verified: true - type: cumulative_reward value: 1014.383337020874 +/- 634.9201357813032 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 0 with difficulty 4 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 0
Difficulty: 4
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)