--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_2_task_1_run_id_2_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-1-difficulty-2 results: - task: type: sub-task name: maximize_extinguished_burning_trees task-id: 1 difficulty-id: 2 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.5083333425223827 +/- 0.2699330882907145 name: Crash Count verified: true - type: extinguishing_trees value: 4.355555608123541 +/- 6.907337205240576 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 217.77777848243713 +/- 345.36685865656506 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.03333333432674408 +/- 0.08719139656193886 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.5000000014901161 +/- 0.38616422218364055 name: Fire too Close to City verified: true - type: preparing_trees value: 390.2111080169678 +/- 226.11041224327414 name: Preparing Trees verified: true - type: preparing_trees_reward value: 390.2111080169678 +/- 226.11041224327414 name: Preparing Trees Reward verified: true - type: water_drop value: 6.283333307504654 +/- 3.095559538761643 name: Water Drop verified: true - type: water_pickup value: 5.966666650772095 +/- 3.12197354808832 name: Water Pickup verified: true - type: cumulative_reward value: 546.4062370300293 +/- 319.2706067457673 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 1 with difficulty 2 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 1
Difficulty: 2
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)