--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_7_task_1_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-1-difficulty-7 results: - task: type: sub-task name: maximize_extinguished_burning_trees task-id: 1 difficulty-id: 7 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.42777778655290605 +/- 0.26862100733560945 name: Crash Count verified: true - type: extinguishing_trees value: 33.80000016689301 +/- 38.84839322135217 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 1690.0000106811524 +/- 1942.4196808320014 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.06666666865348816 +/- 0.13679711768822556 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.9583333343267441 +/- 0.13106625028248262 name: Fire too Close to City verified: true - type: preparing_trees value: 636.8777788162231 +/- 568.0216883131019 name: Preparing Trees verified: true - type: preparing_trees_reward value: 636.8777788162231 +/- 568.0216883131019 name: Preparing Trees Reward verified: true - type: water_drop value: 38.541666984558105 +/- 15.550133835890938 name: Water Drop verified: true - type: water_pickup value: 38.38333382606506 +/- 15.581525306646949 name: Water Pickup verified: true - type: cumulative_reward value: 2319.882499694824 +/- 1935.6842099941402 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 1 with difficulty 7 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 1
Difficulty: 7
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)