--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_1_task_2_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-2-difficulty-1 results: - task: type: sub-task name: maximize_preparing_non_burning_trees task-id: 2 difficulty-id: 1 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.10833333656191826 +/- 0.13545462085140364 name: Crash Count verified: true - type: extinguishing_trees value: 12.764999979734421 +/- 20.904079059070074 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 63.82500011920929 +/- 104.52039570112963 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.46333333626389506 +/- 0.3753984235292453 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.7550000011920929 +/- 0.37763111996880777 name: Fire too Close to City verified: true - type: preparing_trees value: 561.5350036621094 +/- 325.15177018123586 name: Preparing Trees verified: true - type: preparing_trees_reward value: 2807.674984741211 +/- 1625.7588563088673 name: Preparing Trees Reward verified: true - type: water_drop value: 19.77666656970978 +/- 9.682256516548964 name: Water Drop verified: true - type: water_pickup value: 19.191666650772095 +/- 9.573244118078943 name: Water Pickup verified: true - type: cumulative_reward value: 3287.165838623047 +/- 1376.9107350360173 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 2 with difficulty 1 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 2
Difficulty: 1
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)