--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_10_task_2_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-2-difficulty-10 results: - task: type: sub-task name: maximize_preparing_non_burning_trees task-id: 2 difficulty-id: 10 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.15833333730697632 +/- 0.20572934499076767 name: Crash Count verified: true - type: extinguishing_trees value: 19.241666620969774 +/- 33.273080342427235 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 96.20833342075348 +/- 166.36540223877446 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.20833333507180213 +/- 0.32387908421054906 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.95 +/- 0.22360679774997894 name: Fire too Close to City verified: true - type: preparing_trees value: 995.8083220481873 +/- 896.6925434987216 name: Preparing Trees verified: true - type: preparing_trees_reward value: 4979.041623306274 +/- 4483.462788982591 name: Preparing Trees Reward verified: true - type: water_drop value: 36.908333444595335 +/- 20.718840949931526 name: Water Drop verified: true - type: water_pickup value: 36.41666669845581 +/- 20.746415247545407 name: Water Pickup verified: true - type: cumulative_reward value: 5726.971720504761 +/- 3142.936334111313 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 2 with difficulty 10 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 2
Difficulty: 10
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)