--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_2_task_2_run_id_2_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-2-difficulty-2 results: - task: type: sub-task name: maximize_preparing_non_burning_trees task-id: 2 difficulty-id: 2 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.12222222536802292 +/- 0.16381577701779051 name: Crash Count verified: true - type: extinguishing_trees value: 6.599999992549419 +/- 15.242522731448657 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 32.9999993622303 +/- 76.21261195341214 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.3138888914138079 +/- 0.4019425711973155 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.6666666671633721 +/- 0.44261318597616683 name: Fire too Close to City verified: true - type: preparing_trees value: 747.7777755737304 +/- 635.3383235803965 name: Preparing Trees verified: true - type: preparing_trees_reward value: 3738.888851928711 +/- 3176.691613050029 name: Preparing Trees Reward verified: true - type: water_drop value: 23.388888955116272 +/- 12.81474416895113 name: Water Drop verified: true - type: water_pickup value: 22.874999976158144 +/- 12.792184644801207 name: Water Pickup verified: true - type: cumulative_reward value: 3947.1150146484374 +/- 2234.072313108481 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 2 with difficulty 2 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 2
Difficulty: 2
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)