---
library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_2_task_2_run_id_2_train
tags:
- hivex
- hivex-aerial-wildfire-suppression
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-AWS-PPO-baseline-task-2-difficulty-2
results:
- task:
type: sub-task
name: maximize_preparing_non_burning_trees
task-id: 2
difficulty-id: 2
dataset:
name: hivex-aerial-wildfire-suppression
type: hivex-aerial-wildfire-suppression
metrics:
- type: crash_count
value: 0.12222222536802292 +/- 0.16381577701779051
name: Crash Count
verified: true
- type: extinguishing_trees
value: 6.599999992549419 +/- 15.242522731448657
name: Extinguishing Trees
verified: true
- type: extinguishing_trees_reward
value: 32.9999993622303 +/- 76.21261195341214
name: Extinguishing Trees Reward
verified: true
- type: fire_out
value: 0.3138888914138079 +/- 0.4019425711973155
name: Fire Out
verified: true
- type: fire_too_close_to_city
value: 0.6666666671633721 +/- 0.44261318597616683
name: Fire too Close to City
verified: true
- type: preparing_trees
value: 747.7777755737304 +/- 635.3383235803965
name: Preparing Trees
verified: true
- type: preparing_trees_reward
value: 3738.888851928711 +/- 3176.691613050029
name: Preparing Trees Reward
verified: true
- type: water_drop
value: 23.388888955116272 +/- 12.81474416895113
name: Water Drop
verified: true
- type: water_pickup
value: 22.874999976158144 +/- 12.792184644801207
name: Water Pickup
verified: true
- type: cumulative_reward
value: 3947.1150146484374 +/- 2234.072313108481
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 2
with difficulty 2
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Aerial Wildfire Suppression**
Task: 2
Difficulty: 2
Algorithm: PPO
Episode Length: 3000
Training max_steps
: 1800000
Testing max_steps
: 180000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)