--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_7_task_2_run_id_2_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-2-difficulty-7 results: - task: type: sub-task name: maximize_preparing_non_burning_trees task-id: 2 difficulty-id: 7 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.41666667610406877 +/- 0.29369595331135534 name: Crash Count verified: true - type: extinguishing_trees value: 26.98611140549183 +/- 45.067904043919626 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 134.9305568575859 +/- 225.33952073669184 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.09166666939854622 +/- 0.1375963286810061 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.9833333343267441 +/- 0.07453559480732508 name: Fire too Close to City verified: true - type: preparing_trees value: 915.0361038208008 +/- 630.722632747104 name: Preparing Trees verified: true - type: preparing_trees_reward value: 4575.180584716797 +/- 3153.613200762862 name: Preparing Trees Reward verified: true - type: water_drop value: 63.81111078262329 +/- 27.460713193319517 name: Water Drop verified: true - type: water_pickup value: 63.5777774810791 +/- 27.43349377033259 name: Water Pickup verified: true - type: cumulative_reward value: 4956.189190673828 +/- 2576.604065716017 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 2 with difficulty 7 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 2
Difficulty: 7
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)