--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_1_task_3_run_id_0_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-3-difficulty-1 results: - task: type: sub-task name: minimize_time_fire_burning task-id: 3 difficulty-id: 1 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.14166667088866233 +/- 0.18945135260751206 name: Crash Count verified: true - type: extinguishing_trees value: 1.041666679084301 +/- 3.059772488050604 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 5.208333283662796 +/- 15.298862328050262 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.4916666686534882 +/- 0.427405472920952 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.575 +/- 0.46665100224336487 name: Fire too Close to City verified: true - type: preparing_trees value: 654.5333339691163 +/- 369.49324566338055 name: Preparing Trees verified: true - type: preparing_trees_reward value: 654.5333339691163 +/- 369.49324566338055 name: Preparing Trees Reward verified: true - type: water_drop value: 19.52499990463257 +/- 10.494119202517384 name: Water Drop verified: true - type: water_pickup value: 19.108333349227905 +/- 10.481433832592886 name: Water Pickup verified: true - type: cumulative_reward value: 722.9217496871948 +/- 414.79654723295414 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 3 with difficulty 1 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 3
Difficulty: 1
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)