--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_4_task_4_run_id_0_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-4-difficulty-4 results: - task: type: sub-task name: protect_village task-id: 4 difficulty-id: 4 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.995833334326744 +/- 0.01863389536983029 name: Crash Count verified: true - type: extinguishing_trees value: 0.0886829849332571 +/- 0.2431451047770778 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 0.44341491162776947 +/- 1.2157254834823454 name: Extinguishing Trees Reward verified: true - type: fire_too_close_to_city value: 0.02242424301803112 +/- 0.04967780915490442 name: Fire too Close to City verified: true - type: preparing_trees value: 253.21703186035157 +/- 35.590698365756126 name: Preparing Trees verified: true - type: preparing_trees_reward value: 253.21703186035157 +/- 35.590698365756126 name: Preparing Trees Reward verified: true - type: water_drop value: 1.6389704704284669 +/- 0.33632718660720196 name: Water Drop verified: true - type: water_pickup value: 1.6389704704284669 +/- 0.33632718660720196 name: Water Pickup verified: true - type: cumulative_reward value: 145.59471988677979 +/- 48.609159328951485 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 4 with difficulty 4 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 4
Difficulty: 4
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)