---
library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_4_task_4_run_id_0_train
tags:
- hivex
- hivex-aerial-wildfire-suppression
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-AWS-PPO-baseline-task-4-difficulty-4
results:
- task:
type: sub-task
name: protect_village
task-id: 4
difficulty-id: 4
dataset:
name: hivex-aerial-wildfire-suppression
type: hivex-aerial-wildfire-suppression
metrics:
- type: crash_count
value: 0.995833334326744 +/- 0.01863389536983029
name: Crash Count
verified: true
- type: extinguishing_trees
value: 0.0886829849332571 +/- 0.2431451047770778
name: Extinguishing Trees
verified: true
- type: extinguishing_trees_reward
value: 0.44341491162776947 +/- 1.2157254834823454
name: Extinguishing Trees Reward
verified: true
- type: fire_too_close_to_city
value: 0.02242424301803112 +/- 0.04967780915490442
name: Fire too Close to City
verified: true
- type: preparing_trees
value: 253.21703186035157 +/- 35.590698365756126
name: Preparing Trees
verified: true
- type: preparing_trees_reward
value: 253.21703186035157 +/- 35.590698365756126
name: Preparing Trees Reward
verified: true
- type: water_drop
value: 1.6389704704284669 +/- 0.33632718660720196
name: Water Drop
verified: true
- type: water_pickup
value: 1.6389704704284669 +/- 0.33632718660720196
name: Water Pickup
verified: true
- type: cumulative_reward
value: 145.59471988677979 +/- 48.609159328951485
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 4
with difficulty 4
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Aerial Wildfire Suppression**
Task: 4
Difficulty: 4
Algorithm: PPO
Episode Length: 3000
Training max_steps
: 1800000
Testing max_steps
: 180000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)