--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_10_task_6_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-6-difficulty-10 results: - task: type: sub-task name: drop_water task-id: 6 difficulty-id: 10 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.01919534709304571 +/- 0.004891916336268155 name: Crash Count verified: true - type: extinguishing_trees value: 0.14774187933653593 +/- 0.21025496427030596 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 0.7387093845754862 +/- 1.0512748048411527 name: Extinguishing Trees Reward verified: true - type: preparing_trees value: 275.08778228759763 +/- 6.872679334348032 name: Preparing Trees verified: true - type: preparing_trees_reward value: 275.08778228759763 +/- 6.872679334348032 name: Preparing Trees Reward verified: true - type: water_drop value: 0.9804799735546113 +/- 0.0052643568095604555 name: Water Drop verified: true - type: water_pickup value: 0.0006513423752039671 +/- 0.0012320225884513893 name: Water Pickup verified: true - type: cumulative_reward value: 273.9627319335938 +/- 7.442108906238094 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 6 with difficulty 10 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 6
Difficulty: 10
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)