--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_6_task_6_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-6-difficulty-6 results: - task: type: sub-task name: drop_water task-id: 6 difficulty-id: 6 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.011078277812339365 +/- 0.0043961198139685406 name: Crash Count verified: true - type: extinguishing_trees value: 0.18530555460602044 +/- 0.16375919715020168 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 0.926527788490057 +/- 0.8187960126823034 name: Extinguishing Trees Reward verified: true - type: preparing_trees value: 293.15494537353516 +/- 7.732122846347472 name: Preparing Trees verified: true - type: preparing_trees_reward value: 293.15494537353516 +/- 7.732122846347472 name: Preparing Trees Reward verified: true - type: water_drop value: 0.9886111646890641 +/- 0.004251198123759855 name: Water Drop verified: true - type: water_pickup value: 0.00013020833721384407 +/- 0.0005823093864947417 name: Water Pickup verified: true - type: cumulative_reward value: 293.06024780273435 +/- 7.49949720574366 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 6 with difficulty 6 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 6
Difficulty: 6
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)