---
library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_9_task_6_run_id_2_train
tags:
- hivex
- hivex-aerial-wildfire-suppression
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-AWS-PPO-baseline-task-6-difficulty-9
results:
- task:
type: sub-task
name: drop_water
task-id: 6
difficulty-id: 9
dataset:
name: hivex-aerial-wildfire-suppression
type: hivex-aerial-wildfire-suppression
metrics:
- type: crash_count
value: 0.01373663340928033 +/- 0.006368126725441811
name: Crash Count
verified: true
- type: extinguishing_trees
value: 0.20510363813955337 +/- 0.13931107935070292
name: Extinguishing Trees
verified: true
- type: extinguishing_trees_reward
value: 1.0255182035267354 +/- 0.6965553894409803
name: Extinguishing Trees Reward
verified: true
- type: preparing_trees
value: 282.37622985839846 +/- 6.297463507454497
name: Preparing Trees
verified: true
- type: preparing_trees_reward
value: 282.37622985839846 +/- 6.297463507454497
name: Preparing Trees Reward
verified: true
- type: water_drop
value: 0.9859137117862702 +/- 0.006026457217121745
name: Water Drop
verified: true
- type: water_pickup
value: 0.0010042423149570824 +/- 0.0014968736951810181
name: Water Pickup
verified: true
- type: cumulative_reward
value: 282.1384475708008 +/- 6.797800299539885
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 6
with difficulty 9
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Aerial Wildfire Suppression**
Task: 6
Difficulty: 9
Algorithm: PPO
Episode Length: 3000
Training max_steps
: 1800000
Testing max_steps
: 180000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)