philippds commited on
Commit
396ef95
·
verified ·
1 Parent(s): 027a5d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -70
README.md CHANGED
@@ -1,70 +1,70 @@
1
- ---
2
- library_name: hivex
3
- original_train_name: DroneBasedReforestation_difficulty_1_task_0_run_id_2_train
4
- tags:
5
- - hivex
6
- - hivex-drone-based-reforestation
7
- - reinforcement-learning
8
- - multi-agent-reinforcement-learning
9
- model-index:
10
- - name: hivex-DBR-PPO-baseline-task-0-difficulty-1
11
- results:
12
- - task:
13
- type: main-task
14
- name: main_task
15
- task-id: 0
16
- difficulty-id: 1
17
- dataset:
18
- name: hivex-drone-based-reforestation
19
- type: hivex-drone-based-reforestation
20
- metrics:
21
- - type: cumulative_distance_reward
22
- value: 2.0864201402664184 +/- 0.6296944874797746
23
- name: Cumulative Distance Reward
24
- verified: true
25
- - type: cumulative_distance_until_tree_drop
26
- value: 63.19091514587402 +/- 12.303839558575664
27
- name: Cumulative Distance Until Tree Drop
28
- verified: true
29
- - type: cumulative_distance_to_existing_trees
30
- value: 61.76650863647461 +/- 13.908253887773586
31
- name: Cumulative Distance to Existing Trees
32
- verified: true
33
- - type: cumulative_normalized_distance_until_tree_drop
34
- value: 0.20864201247692107 +/- 0.06296944883377423
35
- name: Cumulative Normalized Distance Until Tree Drop
36
- verified: true
37
- - type: cumulative_tree_drop_reward
38
- value: 5.931592869758606 +/- 1.8518746378631161
39
- name: Cumulative Tree Drop Reward
40
- verified: true
41
- - type: out_of_energy_count
42
- value: 0.9266984140872956 +/- 0.06184757754397895
43
- name: Out of Energy Count
44
- verified: true
45
- - type: recharge_energy_count
46
- value: 10.601777839660645 +/- 1.2478378815502142
47
- name: Recharge Energy Count
48
- verified: true
49
- - type: tree_drop_count
50
- value: 1.0418095350265504 +/- 0.08056789785926544
51
- name: Tree Drop Count
52
- verified: true
53
- - type: cumulative_reward
54
- value: 8.961133165359497 +/- 2.7381643935331064
55
- name: Cumulative Reward
56
- verified: true
57
- ---
58
-
59
- This model serves as the baseline for the Drone-Based Reforestation environment, trained and tested on task 0 with difficulty 1 using the Proximal Policy Optimization (PPO) algorithm.
60
-
61
- Environment: Drone-Based Reforestation
62
- Task: <code>0</code>
63
- Difficulty: <code>1</code>
64
- Algorithm: <code>PPO</code>
65
- Episode Length: <code>2000</code>
66
- Training <code>max_steps</code>: <code>1200000</code>
67
- Testing <code>max_steps</code>: <code>300000</code>
68
-
69
- Train & Test [Scripts](https://github.com/hivex-research/hivex)
70
- Download the [Environment](https://github.com/hivex-research/hivex-environments)
 
1
+ ---
2
+ library_name: hivex
3
+ original_train_name: DroneBasedReforestation_difficulty_1_task_0_run_id_2_train
4
+ tags:
5
+ - hivex
6
+ - hivex-drone-based-reforestation
7
+ - reinforcement-learning
8
+ - multi-agent-reinforcement-learning
9
+ model-index:
10
+ - name: hivex-DBR-PPO-baseline-task-0-difficulty-1
11
+ results:
12
+ - task:
13
+ type: main-task
14
+ name: main_task
15
+ task-id: 0
16
+ difficulty-id: 1
17
+ dataset:
18
+ name: hivex-drone-based-reforestation
19
+ type: hivex-drone-based-reforestation
20
+ metrics:
21
+ - type: cumulative_distance_reward
22
+ value: 2.0864201402664184 +/- 0.6296944874797746
23
+ name: Cumulative Distance Reward
24
+ verified: true
25
+ - type: cumulative_distance_until_tree_drop
26
+ value: 63.19091514587402 +/- 12.303839558575664
27
+ name: Cumulative Distance Until Tree Drop
28
+ verified: true
29
+ - type: cumulative_distance_to_existing_trees
30
+ value: 61.76650863647461 +/- 13.908253887773586
31
+ name: Cumulative Distance to Existing Trees
32
+ verified: true
33
+ - type: cumulative_normalized_distance_until_tree_drop
34
+ value: 0.20864201247692107 +/- 0.06296944883377423
35
+ name: Cumulative Normalized Distance Until Tree Drop
36
+ verified: true
37
+ - type: cumulative_tree_drop_reward
38
+ value: 5.931592869758606 +/- 1.8518746378631161
39
+ name: Cumulative Tree Drop Reward
40
+ verified: true
41
+ - type: out_of_energy_count
42
+ value: 0.9266984140872956 +/- 0.06184757754397895
43
+ name: Out of Energy Count
44
+ verified: true
45
+ - type: recharge_energy_count
46
+ value: 10.601777839660645 +/- 1.2478378815502142
47
+ name: Recharge Energy Count
48
+ verified: true
49
+ - type: tree_drop_count
50
+ value: 1.0418095350265504 +/- 0.08056789785926544
51
+ name: Tree Drop Count
52
+ verified: true
53
+ - type: cumulative_reward
54
+ value: 8.961133165359497 +/- 2.7381643935331064
55
+ name: Cumulative Reward
56
+ verified: true
57
+ ---
58
+
59
+ This model serves as the baseline for the Drone-Based Reforestation environment, trained and tested on task 0 with difficulty 1 using the Proximal Policy Optimization (PPO) algorithm.<br>
60
+ <br>
61
+ Environment: Drone-Based Reforestation<br>
62
+ Task: <code>0</code><br>
63
+ Difficulty: <code>1</code><br>
64
+ Algorithm: <code>PPO</code><br>
65
+ Episode Length: <code>2000</code><br>
66
+ Training <code>max_steps</code>: <code>1200000</code><br>
67
+ Testing <code>max_steps</code>: <code>300000</code><br>
68
+ <br>
69
+ Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
70
+ Download the [Environment](https://github.com/hivex-research/hivex-environments)<br>