---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_7_task_0_run_id_2_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-0-difficulty-7
results:
- task:
type: main-task
name: main_task
task-id: 0
difficulty-id: 7
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: cumulative_distance_reward
value: 3.159047532081604 +/- 0.8357707341134992
name: Cumulative Distance Reward
verified: true
- type: cumulative_distance_until_tree_drop
value: 86.77309692382812 +/- 16.14500683977347
name: Cumulative Distance Until Tree Drop
verified: true
- type: cumulative_distance_to_existing_trees
value: 47.3928982925415 +/- 9.37172991243217
name: Cumulative Distance to Existing Trees
verified: true
- type: cumulative_normalized_distance_until_tree_drop
value: 0.3159047555923462 +/- 0.08357707265270713
name: Cumulative Normalized Distance Until Tree Drop
verified: true
- type: cumulative_tree_drop_reward
value: 7.276955466270447 +/- 1.8673272306379547
name: Cumulative Tree Drop Reward
verified: true
- type: out_of_energy_count
value: 0.9944761908054351 +/- 0.02380680114658389
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 9.957492036819458 +/- 0.8696697050846641
name: Recharge Energy Count
verified: true
- type: tree_drop_count
value: 0.9822539675235749 +/- 0.03421961796573733
name: Tree Drop Count
verified: true
- type: cumulative_reward
value: 11.030714321136475 +/- 2.7815221104620416
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 0
with difficulty 7
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 0
Difficulty: 7
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)