---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_9_task_0_run_id_1_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-0-difficulty-9
results:
- task:
type: main-task
name: main_task
task-id: 0
difficulty-id: 9
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: cumulative_distance_reward
value: 1.9881950914859772 +/- 0.6435197796866906
name: Cumulative Distance Reward
verified: true
- type: cumulative_distance_until_tree_drop
value: 62.70152519226074 +/- 15.481708378361306
name: Cumulative Distance Until Tree Drop
verified: true
- type: cumulative_distance_to_existing_trees
value: 65.97381935119628 +/- 11.85813603247749
name: Cumulative Distance to Existing Trees
verified: true
- type: cumulative_normalized_distance_until_tree_drop
value: 0.19881950929760933 +/- 0.06435197701542571
name: Cumulative Normalized Distance Until Tree Drop
verified: true
- type: cumulative_tree_drop_reward
value: 5.003359270095825 +/- 1.691449588116139
name: Cumulative Tree Drop Reward
verified: true
- type: out_of_energy_count
value: 0.9511428594589233 +/- 0.05597489611462524
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 10.313650798797607 +/- 1.3015464035988247
name: Recharge Energy Count
verified: true
- type: tree_drop_count
value: 1.0218095362186432 +/- 0.05570651145686611
name: Tree Drop Count
verified: true
- type: cumulative_reward
value: 7.543602123260498 +/- 2.5896056315352975
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 0
with difficulty 9
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 0
Difficulty: 9
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)