philippds commited on
Commit
ad18fbe
·
verified ·
1 Parent(s): 64c8f6e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -57
README.md CHANGED
@@ -1,57 +1,31 @@
1
- ---
2
- library_name: hivex
3
- original_train_name: DroneBasedReforestation_difficulty_5_task_1_run_id_1_train
4
- tags:
5
- - hivex
6
- - hivex-drone-based-reforestation
7
- - reinforcement-learning
8
- - multi-agent-reinforcement-learning
9
- model-index:
10
- - name: hivex-DBR-PPO-baseline-task-1-difficulty-5
11
- results:
12
- - task:
13
- type: sub-task
14
- name: find_closest_forest_perimeter
15
- task-id: 1
16
- difficulty-id: 5
17
- dataset:
18
- name: hivex-drone-based-reforestation
19
- type: hivex-drone-based-reforestation
20
- metrics:
21
- - type: cumulative_reward
22
- value: 98.19454025268554 +/- 2.013315524136616
23
- name: "Cumulative Reward"
24
- verified: true
25
- - type: cumulative_distance_reward
26
- value: 0.0 +/- 0.0
27
- name: "Cumulative Distance Reward"
28
- verified: true
29
- - type: cumulative_distance_until_tree_drop
30
- value: 0.0 +/- 0.0
31
- name: "Cumulative Distance Until Tree Drop"
32
- verified: true
33
- - type: cumulative_distance_to_existing_trees
34
- value: 0.0 +/- 0.0
35
- name: "Cumulative Distance to Existing Trees"
36
- verified: true
37
- - type: cumulative_normalized_distance_until_tree_drop
38
- value: 0.0 +/- 0.0
39
- name: "Cumulative Normalized Distance Until Tree Drop"
40
- verified: true
41
- - type: cumulative_tree_drop_reward
42
- value: 0.0 +/- 0.0
43
- name: "Cumulative Tree Drop Reward"
44
- verified: true
45
- - type: out_of_energy_count
46
- value: 0.013677190858870744 +/- 0.015857580403509562
47
- name: "Out of Energy Count"
48
- verified: true
49
- - type: recharge_energy_count
50
- value: 0.0 +/- 0.0
51
- name: "Recharge Energy Count"
52
- verified: true
53
- - type: tree_drop_count
54
- value: 0.0 +/- 0.0
55
- name: "Tree Drop Count"
56
- verified: true
57
- ---
 
1
+ ---
2
+ library_name: hivex
3
+ original_train_name: DroneBasedReforestation_difficulty_5_task_1_run_id_1_train
4
+ tags:
5
+ - hivex
6
+ - hivex-drone-based-reforestation
7
+ - reinforcement-learning
8
+ - multi-agent-reinforcement-learning
9
+ model-index:
10
+ - name: hivex-DBR-PPO-baseline-task-1-difficulty-5
11
+ results:
12
+ - task:
13
+ type: sub-task
14
+ name: find_closest_forest_perimeter
15
+ task-id: 1
16
+ difficulty-id: 5
17
+ dataset:
18
+ name: hivex-drone-based-reforestation
19
+ type: hivex-drone-based-reforestation
20
+ metrics:
21
+ - type: out_of_energy_count
22
+ value: 0.013677190858870744 +/- 0.015857580403509562
23
+ name: Out of Energy Count
24
+ verified: true
25
+ - type: cumulative_reward
26
+ value: 98.19454025268554 +/- 2.013315524136616
27
+ name: Cumulative Reward
28
+ verified: true
29
+ ---
30
+
31
+ This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>1</code> with difficulty <code>5</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>1</code><br>Difficulty: <code>5</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments)