---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_5_task_3_run_id_2_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-3-difficulty-5
results:
- task:
type: sub-task
name: drop_seed
task-id: 3
difficulty-id: 5
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: cumulative_distance_reward
value: 1.317925215959549 +/- 0.28260177110908363
name: Cumulative Distance Reward
verified: true
- type: cumulative_distance_until_tree_drop
value: 48.28620391845703 +/- 7.283860263327832
name: Cumulative Distance Until Tree Drop
verified: true
- type: cumulative_distance_to_existing_trees
value: 64.57429847717285 +/- 5.444324231140867
name: Cumulative Distance to Existing Trees
verified: true
- type: cumulative_normalized_distance_until_tree_drop
value: 0.13179252222180365 +/- 0.02826017752675318
name: Cumulative Normalized Distance Until Tree Drop
verified: true
- type: cumulative_tree_drop_reward
value: 4.009531931877136 +/- 0.661158168654566
name: Cumulative Tree Drop Reward
verified: true
- type: out_of_energy_count
value: 0.03808173710480332 +/- 0.021781055433560147
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 10.746735401153565 +/- 0.6862137746749559
name: Recharge Energy Count
verified: true
- type: tree_drop_count
value: 0.9473729825019837 +/- 0.03268839810742225
name: Tree Drop Count
verified: true
- type: cumulative_reward
value: 101.15483459472657 +/- 3.824644657818079
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 3
with difficulty 5
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 3
Difficulty: 5
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)