--- library_name: hivex original_train_name: DroneBasedReforestation_difficulty_9_task_3_run_id_1_train tags: - hivex - hivex-drone-based-reforestation - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-DBR-PPO-baseline-task-3-difficulty-9 results: - task: type: sub-task name: drop_seed task-id: 3 difficulty-id: 9 dataset: name: hivex-drone-based-reforestation type: hivex-drone-based-reforestation metrics: - type: cumulative_distance_reward value: 1.3542225050926209 +/- 0.23333899783579354 name: Cumulative Distance Reward verified: true - type: cumulative_distance_until_tree_drop value: 49.953554458618164 +/- 6.4635271249103035 name: Cumulative Distance Until Tree Drop verified: true - type: cumulative_distance_to_existing_trees value: 65.1268350982666 +/- 6.275221217555885 name: Cumulative Distance to Existing Trees verified: true - type: cumulative_normalized_distance_until_tree_drop value: 0.13542225003242492 +/- 0.02333390047639469 name: Cumulative Normalized Distance Until Tree Drop verified: true - type: cumulative_tree_drop_reward value: 4.086031370162964 +/- 0.8049852876065032 name: Cumulative Tree Drop Reward verified: true - type: out_of_energy_count value: 0.03118088087067008 +/- 0.020989988346072946 name: Out of Energy Count verified: true - type: recharge_energy_count value: 11.123015098571777 +/- 0.6124465630966653 name: Recharge Energy Count verified: true - type: tree_drop_count value: 0.9591382348537445 +/- 0.028923095592019384 name: Tree Drop Count verified: true - type: cumulative_reward value: 102.52203262329101 +/- 3.3865961577425283 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 3 with difficulty 9 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Drone-Based Reforestation**
Task: 3
Difficulty: 9
Algorithm: PPO
Episode Length: 2000
Training max_steps: 1200000
Testing max_steps: 300000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)