--- library_name: hivex original_train_name: OceanPlasticCollection_task_2_run_id_1_train tags: - hivex - hivex-ocean-plastic-collection - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-OPC-PPO-baseline-task-2 results: - task: type: sub-task name: group_up task-id: 2 dataset: name: hivex-ocean-plastic-collection type: hivex-ocean-plastic-collection metrics: - type: cumulative_reward value: 868.6791931152344 +/- 177.8582676854445 name: "Cumulative Reward" verified: true - type: global_reward value: 294.7176452636719 +/- 58.7408861442478 name: "Global Reward" verified: true - type: local_reward value: 165.2141372680664 +/- 20.43658256777414 name: "Local Reward" verified: true --- This model serves as the baseline for the **Ocean Plastic Collection** environment, trained and tested on task 2 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Ocean Plastic Collection**
Task: 2
Algorithm: PPO
Episode Length: 5000
Training max_steps: 3000000
Testing max_steps: 150000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)