philippds commited on
Commit
3316df5
1 Parent(s): 3c301bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -29
README.md CHANGED
@@ -1,29 +1,42 @@
1
- ---
2
- library_name: hivex
3
- original_train_name: WindFarmControl_pattern_5_task_0_run_id_2_train
4
- tags:
5
- - hivex
6
- - hivex-wind-farm-control
7
- - reinforcement-learning
8
- - multi-agent-reinforcement-learning
9
- model-index:
10
- - name: hivex-WFC-PPO-baseline-task-0-pattern-5
11
- results:
12
- - task:
13
- type: main-task
14
- name: main_task
15
- task-id: 0
16
- pattern-id: 5
17
- dataset:
18
- name: hivex-wind-farm-control
19
- type: hivex-wind-farm-control
20
- metrics:
21
- - type: cumulative_reward
22
- value: 4600.620004882812 +/- 40.41541758003466
23
- name: Cumulative Reward
24
- verified: true
25
- - type: individual_performance
26
- value: 4600.548657226563 +/- 40.63884514822075
27
- name: Individual Performance
28
- verified: true
29
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: hivex
3
+ original_train_name: WindFarmControl_pattern_5_task_0_run_id_2_train
4
+ tags:
5
+ - hivex
6
+ - hivex-wind-farm-control
7
+ - reinforcement-learning
8
+ - multi-agent-reinforcement-learning
9
+ model-index:
10
+ - name: hivex-WFC-PPO-baseline-task-0-pattern-5
11
+ results:
12
+ - task:
13
+ type: main-task
14
+ name: main_task
15
+ task-id: 0
16
+ pattern-id: 5
17
+ dataset:
18
+ name: hivex-wind-farm-control
19
+ type: hivex-wind-farm-control
20
+ metrics:
21
+ - type: cumulative_reward
22
+ value: 4600.620004882812 +/- 40.41541758003466
23
+ name: Cumulative Reward
24
+ verified: true
25
+ - type: individual_performance
26
+ value: 4600.548657226563 +/- 40.63884514822075
27
+ name: Individual Performance
28
+ verified: true
29
+ ---
30
+
31
+ This model serves as the baseline for the **Wind Farm Control** environment, trained and tested on task <code>0</code> with pattern <code>5</code> using the Proximal Policy Optimization (PPO) algorithm.<br>
32
+ <br>
33
+ Environment: **Wind Farm Control**<br>
34
+ Task: <code>0</code><br>
35
+ Pattern: <code>5</code><br>
36
+ Algorithm: <code>PPO</code><br>
37
+ Episode Length: <code>5000</code><br>
38
+ Training <code>max_steps</code>: <code>8000000</code><br>
39
+ Testing <code>max_steps</code>: <code>8000000</code><br>
40
+ <br>
41
+ Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
42
+ Download the [Environment](https://github.com/hivex-research/hivex-environments)