--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_lr00001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.12195121951219512 --- # hushem_1x_deit_tiny_sgd_lr00001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6421 - Accuracy: 0.1220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.6490 | 0.1220 | | 1.6062 | 2.0 | 12 | 1.6487 | 0.1220 | | 1.6062 | 3.0 | 18 | 1.6483 | 0.1220 | | 1.6229 | 4.0 | 24 | 1.6480 | 0.1220 | | 1.5995 | 5.0 | 30 | 1.6477 | 0.1220 | | 1.5995 | 6.0 | 36 | 1.6474 | 0.1220 | | 1.5906 | 7.0 | 42 | 1.6470 | 0.1220 | | 1.5906 | 8.0 | 48 | 1.6468 | 0.1220 | | 1.609 | 9.0 | 54 | 1.6465 | 0.1220 | | 1.6018 | 10.0 | 60 | 1.6462 | 0.1220 | | 1.6018 | 11.0 | 66 | 1.6459 | 0.1220 | | 1.5944 | 12.0 | 72 | 1.6457 | 0.1220 | | 1.5944 | 13.0 | 78 | 1.6454 | 0.1220 | | 1.6013 | 14.0 | 84 | 1.6452 | 0.1220 | | 1.5987 | 15.0 | 90 | 1.6449 | 0.1220 | | 1.5987 | 16.0 | 96 | 1.6447 | 0.1220 | | 1.5899 | 17.0 | 102 | 1.6445 | 0.1220 | | 1.5899 | 18.0 | 108 | 1.6443 | 0.1220 | | 1.626 | 19.0 | 114 | 1.6441 | 0.1220 | | 1.5972 | 20.0 | 120 | 1.6439 | 0.1220 | | 1.5972 | 21.0 | 126 | 1.6437 | 0.1220 | | 1.5649 | 22.0 | 132 | 1.6436 | 0.1220 | | 1.5649 | 23.0 | 138 | 1.6434 | 0.1220 | | 1.6699 | 24.0 | 144 | 1.6433 | 0.1220 | | 1.5696 | 25.0 | 150 | 1.6431 | 0.1220 | | 1.5696 | 26.0 | 156 | 1.6430 | 0.1220 | | 1.5743 | 27.0 | 162 | 1.6429 | 0.1220 | | 1.5743 | 28.0 | 168 | 1.6427 | 0.1220 | | 1.6236 | 29.0 | 174 | 1.6426 | 0.1220 | | 1.5936 | 30.0 | 180 | 1.6426 | 0.1220 | | 1.5936 | 31.0 | 186 | 1.6425 | 0.1220 | | 1.5875 | 32.0 | 192 | 1.6424 | 0.1220 | | 1.5875 | 33.0 | 198 | 1.6423 | 0.1220 | | 1.6171 | 34.0 | 204 | 1.6423 | 0.1220 | | 1.5897 | 35.0 | 210 | 1.6422 | 0.1220 | | 1.5897 | 36.0 | 216 | 1.6422 | 0.1220 | | 1.5725 | 37.0 | 222 | 1.6421 | 0.1220 | | 1.5725 | 38.0 | 228 | 1.6421 | 0.1220 | | 1.6227 | 39.0 | 234 | 1.6421 | 0.1220 | | 1.5924 | 40.0 | 240 | 1.6421 | 0.1220 | | 1.5924 | 41.0 | 246 | 1.6421 | 0.1220 | | 1.5811 | 42.0 | 252 | 1.6421 | 0.1220 | | 1.5811 | 43.0 | 258 | 1.6421 | 0.1220 | | 1.6072 | 44.0 | 264 | 1.6421 | 0.1220 | | 1.5938 | 45.0 | 270 | 1.6421 | 0.1220 | | 1.5938 | 46.0 | 276 | 1.6421 | 0.1220 | | 1.6243 | 47.0 | 282 | 1.6421 | 0.1220 | | 1.6243 | 48.0 | 288 | 1.6421 | 0.1220 | | 1.5633 | 49.0 | 294 | 1.6421 | 0.1220 | | 1.6091 | 50.0 | 300 | 1.6421 | 0.1220 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1