File size: 4,882 Bytes
1727c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_beit_large_adamax_0001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8444444444444444
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_40x_beit_large_adamax_0001_fold2

This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5515
- Accuracy: 0.8444

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0224        | 1.0   | 215   | 0.7690          | 0.8222   |
| 0.0           | 2.0   | 430   | 0.9419          | 0.8222   |
| 0.0           | 3.0   | 645   | 0.9930          | 0.8667   |
| 0.0           | 4.0   | 860   | 0.8917          | 0.8444   |
| 0.0           | 5.0   | 1075  | 0.9011          | 0.8667   |
| 0.0           | 6.0   | 1290  | 0.8682          | 0.8667   |
| 0.0016        | 7.0   | 1505  | 1.2238          | 0.8444   |
| 0.0197        | 8.0   | 1720  | 1.2274          | 0.8667   |
| 0.0027        | 9.0   | 1935  | 1.0944          | 0.8444   |
| 0.0058        | 10.0  | 2150  | 1.9516          | 0.7778   |
| 0.0           | 11.0  | 2365  | 1.8577          | 0.7556   |
| 0.0           | 12.0  | 2580  | 1.7768          | 0.8      |
| 0.0           | 13.0  | 2795  | 1.1199          | 0.7778   |
| 0.0           | 14.0  | 3010  | 1.2644          | 0.8222   |
| 0.0           | 15.0  | 3225  | 0.9150          | 0.8889   |
| 0.0           | 16.0  | 3440  | 0.8728          | 0.8889   |
| 0.0           | 17.0  | 3655  | 0.8904          | 0.8889   |
| 0.0           | 18.0  | 3870  | 0.8975          | 0.8889   |
| 0.0           | 19.0  | 4085  | 0.9193          | 0.8889   |
| 0.0           | 20.0  | 4300  | 0.9261          | 0.8889   |
| 0.0           | 21.0  | 4515  | 1.6757          | 0.8      |
| 0.0           | 22.0  | 4730  | 1.3218          | 0.8444   |
| 0.0           | 23.0  | 4945  | 1.3867          | 0.8222   |
| 0.0           | 24.0  | 5160  | 1.3833          | 0.8444   |
| 0.0           | 25.0  | 5375  | 1.2895          | 0.8444   |
| 0.0           | 26.0  | 5590  | 1.2783          | 0.8667   |
| 0.0           | 27.0  | 5805  | 1.2770          | 0.8667   |
| 0.0           | 28.0  | 6020  | 1.2426          | 0.8667   |
| 0.0           | 29.0  | 6235  | 1.2537          | 0.8667   |
| 0.0           | 30.0  | 6450  | 1.2475          | 0.8667   |
| 0.0           | 31.0  | 6665  | 1.2602          | 0.8667   |
| 0.0           | 32.0  | 6880  | 1.2779          | 0.8667   |
| 0.0           | 33.0  | 7095  | 1.2891          | 0.8667   |
| 0.0           | 34.0  | 7310  | 1.3447          | 0.8444   |
| 0.0           | 35.0  | 7525  | 1.3109          | 0.8667   |
| 0.0           | 36.0  | 7740  | 1.3704          | 0.8667   |
| 0.0           | 37.0  | 7955  | 1.5945          | 0.8      |
| 0.0           | 38.0  | 8170  | 1.5665          | 0.8444   |
| 0.0           | 39.0  | 8385  | 1.4945          | 0.8444   |
| 0.0           | 40.0  | 8600  | 1.4921          | 0.8444   |
| 0.0           | 41.0  | 8815  | 1.5103          | 0.8444   |
| 0.0           | 42.0  | 9030  | 1.5661          | 0.8444   |
| 0.0           | 43.0  | 9245  | 1.5778          | 0.8444   |
| 0.0           | 44.0  | 9460  | 1.5715          | 0.8444   |
| 0.0           | 45.0  | 9675  | 1.5931          | 0.8444   |
| 0.0           | 46.0  | 9890  | 1.5813          | 0.8444   |
| 0.0           | 47.0  | 10105 | 1.5501          | 0.8444   |
| 0.0           | 48.0  | 10320 | 1.5512          | 0.8444   |
| 0.0           | 49.0  | 10535 | 1.5477          | 0.8444   |
| 0.0           | 50.0  | 10750 | 1.5515          | 0.8444   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2