--- license: apache-2.0 base_model: microsoft/beit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_beit_large_adamax_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8536585365853658 --- # hushem_40x_beit_large_adamax_0001_fold5 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9014 - Accuracy: 0.8537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0137 | 1.0 | 220 | 0.6252 | 0.8049 | | 0.0039 | 2.0 | 440 | 0.3651 | 0.9268 | | 0.0 | 3.0 | 660 | 0.2079 | 0.9512 | | 0.0 | 4.0 | 880 | 0.2782 | 0.8780 | | 0.0015 | 5.0 | 1100 | 0.3966 | 0.8780 | | 0.0006 | 6.0 | 1320 | 0.9179 | 0.8049 | | 0.0 | 7.0 | 1540 | 0.6543 | 0.8780 | | 0.0 | 8.0 | 1760 | 0.6721 | 0.8537 | | 0.0 | 9.0 | 1980 | 0.6667 | 0.8537 | | 0.0 | 10.0 | 2200 | 0.6892 | 0.8293 | | 0.0 | 11.0 | 2420 | 0.6788 | 0.8293 | | 0.0187 | 12.0 | 2640 | 0.6872 | 0.8537 | | 0.0 | 13.0 | 2860 | 1.1812 | 0.8049 | | 0.0 | 14.0 | 3080 | 0.6787 | 0.8537 | | 0.0 | 15.0 | 3300 | 0.7294 | 0.8293 | | 0.0 | 16.0 | 3520 | 1.0136 | 0.8293 | | 0.0 | 17.0 | 3740 | 0.9479 | 0.8293 | | 0.0 | 18.0 | 3960 | 0.9308 | 0.8293 | | 0.0 | 19.0 | 4180 | 0.8944 | 0.8293 | | 0.0 | 20.0 | 4400 | 0.8979 | 0.8293 | | 0.0 | 21.0 | 4620 | 0.8942 | 0.8293 | | 0.0 | 22.0 | 4840 | 0.9123 | 0.8293 | | 0.0 | 23.0 | 5060 | 0.7263 | 0.8537 | | 0.0 | 24.0 | 5280 | 0.7426 | 0.8537 | | 0.0 | 25.0 | 5500 | 0.7599 | 0.8293 | | 0.0 | 26.0 | 5720 | 0.7693 | 0.8293 | | 0.0 | 27.0 | 5940 | 0.8044 | 0.8293 | | 0.0 | 28.0 | 6160 | 0.8028 | 0.8293 | | 0.0 | 29.0 | 6380 | 0.6542 | 0.8293 | | 0.0 | 30.0 | 6600 | 0.6934 | 0.8293 | | 0.0 | 31.0 | 6820 | 0.6814 | 0.8293 | | 0.0 | 32.0 | 7040 | 0.6666 | 0.8537 | | 0.0 | 33.0 | 7260 | 0.7695 | 0.8293 | | 0.0 | 34.0 | 7480 | 1.0033 | 0.8293 | | 0.0 | 35.0 | 7700 | 0.9558 | 0.8537 | | 0.0 | 36.0 | 7920 | 0.8444 | 0.8537 | | 0.0 | 37.0 | 8140 | 0.9196 | 0.8537 | | 0.0 | 38.0 | 8360 | 0.8784 | 0.8537 | | 0.0 | 39.0 | 8580 | 0.8306 | 0.8780 | | 0.0 | 40.0 | 8800 | 0.9373 | 0.8537 | | 0.0 | 41.0 | 9020 | 0.9235 | 0.8537 | | 0.0 | 42.0 | 9240 | 0.9473 | 0.8537 | | 0.0 | 43.0 | 9460 | 0.9424 | 0.8537 | | 0.0 | 44.0 | 9680 | 0.9102 | 0.8537 | | 0.0 | 45.0 | 9900 | 0.9576 | 0.8537 | | 0.0 | 46.0 | 10120 | 0.9639 | 0.8537 | | 0.0 | 47.0 | 10340 | 0.9689 | 0.8537 | | 0.0 | 48.0 | 10560 | 0.8859 | 0.8537 | | 0.0 | 49.0 | 10780 | 0.9011 | 0.8537 | | 0.0 | 50.0 | 11000 | 0.9014 | 0.8537 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2