hkivancoral
commited on
Commit
•
acc1e1a
1
Parent(s):
d492c87
End of training
Browse files- README.md +125 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/beit-large-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: smids_10x_beit_large_sgd_0001_fold2
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8768718801996672
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# smids_10x_beit_large_sgd_0001_fold2
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3022
|
36 |
+
- Accuracy: 0.8769
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0001
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 50
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
68 |
+
| 0.9337 | 1.0 | 750 | 0.9902 | 0.5025 |
|
69 |
+
| 0.7559 | 2.0 | 1500 | 0.8323 | 0.6206 |
|
70 |
+
| 0.6418 | 3.0 | 2250 | 0.7119 | 0.7205 |
|
71 |
+
| 0.6498 | 4.0 | 3000 | 0.6261 | 0.7737 |
|
72 |
+
| 0.5308 | 5.0 | 3750 | 0.5616 | 0.8020 |
|
73 |
+
| 0.5189 | 6.0 | 4500 | 0.5157 | 0.8186 |
|
74 |
+
| 0.4977 | 7.0 | 5250 | 0.4808 | 0.8303 |
|
75 |
+
| 0.4495 | 8.0 | 6000 | 0.4552 | 0.8369 |
|
76 |
+
| 0.4544 | 9.0 | 6750 | 0.4332 | 0.8303 |
|
77 |
+
| 0.4325 | 10.0 | 7500 | 0.4166 | 0.8336 |
|
78 |
+
| 0.4708 | 11.0 | 8250 | 0.4025 | 0.8419 |
|
79 |
+
| 0.4375 | 12.0 | 9000 | 0.3904 | 0.8419 |
|
80 |
+
| 0.3875 | 13.0 | 9750 | 0.3796 | 0.8486 |
|
81 |
+
| 0.338 | 14.0 | 10500 | 0.3718 | 0.8486 |
|
82 |
+
| 0.3613 | 15.0 | 11250 | 0.3643 | 0.8502 |
|
83 |
+
| 0.3159 | 16.0 | 12000 | 0.3576 | 0.8569 |
|
84 |
+
| 0.313 | 17.0 | 12750 | 0.3520 | 0.8602 |
|
85 |
+
| 0.3243 | 18.0 | 13500 | 0.3466 | 0.8619 |
|
86 |
+
| 0.3747 | 19.0 | 14250 | 0.3420 | 0.8619 |
|
87 |
+
| 0.3494 | 20.0 | 15000 | 0.3382 | 0.8652 |
|
88 |
+
| 0.3628 | 21.0 | 15750 | 0.3347 | 0.8652 |
|
89 |
+
| 0.2681 | 22.0 | 16500 | 0.3313 | 0.8686 |
|
90 |
+
| 0.3103 | 23.0 | 17250 | 0.3283 | 0.8686 |
|
91 |
+
| 0.3029 | 24.0 | 18000 | 0.3255 | 0.8686 |
|
92 |
+
| 0.3439 | 25.0 | 18750 | 0.3228 | 0.8686 |
|
93 |
+
| 0.363 | 26.0 | 19500 | 0.3205 | 0.8735 |
|
94 |
+
| 0.3457 | 27.0 | 20250 | 0.3186 | 0.8735 |
|
95 |
+
| 0.3118 | 28.0 | 21000 | 0.3168 | 0.8719 |
|
96 |
+
| 0.3203 | 29.0 | 21750 | 0.3151 | 0.8719 |
|
97 |
+
| 0.2897 | 30.0 | 22500 | 0.3135 | 0.8702 |
|
98 |
+
| 0.3287 | 31.0 | 23250 | 0.3118 | 0.8702 |
|
99 |
+
| 0.3672 | 32.0 | 24000 | 0.3107 | 0.8719 |
|
100 |
+
| 0.3139 | 33.0 | 24750 | 0.3101 | 0.8702 |
|
101 |
+
| 0.3173 | 34.0 | 25500 | 0.3088 | 0.8719 |
|
102 |
+
| 0.3321 | 35.0 | 26250 | 0.3079 | 0.8735 |
|
103 |
+
| 0.3146 | 36.0 | 27000 | 0.3071 | 0.8735 |
|
104 |
+
| 0.3221 | 37.0 | 27750 | 0.3062 | 0.8735 |
|
105 |
+
| 0.2973 | 38.0 | 28500 | 0.3058 | 0.8752 |
|
106 |
+
| 0.275 | 39.0 | 29250 | 0.3050 | 0.8752 |
|
107 |
+
| 0.3603 | 40.0 | 30000 | 0.3045 | 0.8752 |
|
108 |
+
| 0.3249 | 41.0 | 30750 | 0.3040 | 0.8752 |
|
109 |
+
| 0.3107 | 42.0 | 31500 | 0.3036 | 0.8752 |
|
110 |
+
| 0.2783 | 43.0 | 32250 | 0.3032 | 0.8752 |
|
111 |
+
| 0.2901 | 44.0 | 33000 | 0.3029 | 0.8752 |
|
112 |
+
| 0.3257 | 45.0 | 33750 | 0.3026 | 0.8752 |
|
113 |
+
| 0.2732 | 46.0 | 34500 | 0.3025 | 0.8752 |
|
114 |
+
| 0.3622 | 47.0 | 35250 | 0.3024 | 0.8769 |
|
115 |
+
| 0.3082 | 48.0 | 36000 | 0.3023 | 0.8769 |
|
116 |
+
| 0.2937 | 49.0 | 36750 | 0.3022 | 0.8769 |
|
117 |
+
| 0.3097 | 50.0 | 37500 | 0.3022 | 0.8769 |
|
118 |
+
|
119 |
+
|
120 |
+
### Framework versions
|
121 |
+
|
122 |
+
- Transformers 4.32.1
|
123 |
+
- Pytorch 2.1.0+cu121
|
124 |
+
- Datasets 2.12.0
|
125 |
+
- Tokenizers 0.13.2
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1213785638
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39aad0457d0fbaf818f9276c6fd928c05557ddfda1440a7e7e4ff81d02a0ea85
|
3 |
size 1213785638
|