Text Generation
Transformers
Safetensors
English
llama
mathematics
Eval Results
text-generation-inference
Inference Endpoints
tongyx361 commited on
Commit
9a0231b
·
verified ·
1 Parent(s): 2a302b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +171 -196
README.md CHANGED
@@ -1,199 +1,174 @@
1
  ---
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ license: llama3
5
  library_name: transformers
6
+ tags:
7
+ - mathematics
8
+ datasets:
9
+ - hkust-nlp/dart-math-uniform
10
+ metrics:
11
+ - accuracy
12
+ pipeline_tag: text-generation
13
+ base_model: meta-llama/Meta-Llama-3-70B
14
+ model-index:
15
+ - name: dart-math-llama3-70b-uniform
16
+ results:
17
+ - task:
18
+ type: text-generation
19
+ name: Mathematical Problem-Solving
20
+ dataset:
21
+ type: hendrycks/competition_math
22
+ name: MATH
23
+ split: test
24
+ metrics:
25
+ - type: accuracy
26
+ name: Pass@1 (0-shot CoT)
27
+ value: 54.9
28
+ - task:
29
+ type: text-generation
30
+ name: Mathematical Problem-Solving
31
+ dataset:
32
+ type: openai/gsm8k
33
+ name: GSM8K
34
+ config: main
35
+ split: test
36
+ metrics:
37
+ - type: accuracy
38
+ name: Pass@1 (0-shot CoT)
39
+ value: 90.4
40
+ - task:
41
+ type: text-generation
42
+ name: Mathematical Problem-Solving
43
+ dataset:
44
+ type: college-math
45
+ name: CollegeMath
46
+ metrics:
47
+ - type: accuracy
48
+ name: Pass@1 (0-shot CoT)
49
+ value: 38.5
50
+ - task:
51
+ type: text-generation
52
+ name: Mathematical Problem-Solving
53
+ dataset:
54
+ type: deepmind-mathematics
55
+ name: DeepMind-Mathematics
56
+ metrics:
57
+ - type: accuracy
58
+ name: Pass@1 (0-shot CoT)
59
+ value: 64.1
60
+ - task:
61
+ type: text-generation
62
+ name: Mathematical Problem-Solving
63
+ dataset:
64
+ type: Hothan/OlympiadBench
65
+ name: OlympiadBench-OE_TO_maths_en_COMP
66
+ config: OE_TO_maths_en_COMP
67
+ split: train
68
+ metrics:
69
+ - type: accuracy
70
+ name: Pass@1 (0-shot CoT)
71
+ value: 19.1
72
+ - task:
73
+ type: text-generation
74
+ name: Mathematical Problem-Solving
75
+ dataset:
76
+ type: TIGER-Lab/TheoremQA
77
+ name: TheoremQA
78
+ split: test
79
+ metrics:
80
+ - type: accuracy
81
+ name: Pass@1 (0-shot CoT)
82
+ value: 27.4
83
  ---
84
+ # DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving
85
+
86
+ 📝 [Paper@arXiv](https://arxiv.org/abs/2407.13690) | 🤗 [Datasets&Models@HF](https://huggingface.co/collections/hkust-nlp/dart-math-665704599b35de59f8fdf6c1) | 🐱 [Code@GitHub](https://github.com/hkust-nlp/dart-math) | 🐦 [Thread@X(Twitter)](https://x.com/tongyx361/status/1811413243350454455) | 🐶 [中文博客@知乎](https://zhuanlan.zhihu.com/p/708371895) | 📑 [BibTeX](https://github.com/hkust-nlp/dart-math?tab=readme-ov-file#citation)
87
+
88
+ ## Models: `DART-Math`
89
+
90
+ `DART-Math` models achieve performance **superior or competitive to previous SOTAs** on 2 in-domain and 4 challenging out-of-domain mathematical reasoning benchmarks, despite using **much smaller datasets** and **no proprietary model like GPT-4**.
91
+
92
+ | Model | [MATH](https://huggingface.co/datasets/hendrycks/competition_math) | [GSM8K](https://huggingface.co/datasets/gsm8k) | [College](https://github.com/hkust-nlp/dart-math/tree/main/data/eval-dsets/mwpbench/college-math-test.jsonl) | [DM](https://github.com/hkust-nlp/dart-math/tree/main/data/eval-dsets/deepmind-mathematics.json) | [Olympiad](https://github.com/hkust-nlp/dart-math/tree/main/data/eval-dsets/olympiadbench/OE_TO_maths_en_COMP.json) | [Theorem](https://github.com/hkust-nlp/dart-math/tree/main/data/eval-dsets/theoremqa.json) | AVG |
93
+ | :----------------------------------------------------------------------------------------------------- | -----------------------------------------------------------------: | ---------------------------------------------: | -----------------------------------------------------------------------------------------------------------: | -----------------------------------------------------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------: | -----------------------------------------------------------------------------------------: | -------: |
94
+ | GPT-4 (0314) | [52.6](https://arxiv.org/abs/2403.04706) | [94.7](https://arxiv.org/abs/2403.04706) | [24.4](https://arxiv.org/abs/2403.02884) | -- | -- | -- | -- |
95
+ | Llama-3-70B-MetaMath | 44.9 | 88.0 | 31.9 | 53.2 | 11.6 | 21.9 | 41.9 |
96
+ | [`DART-Math-Llama-3-70B` (Uniform)](https://huggingface.co/hkust-nlp/dart-math-llama3-70b-uniform) | 54.9 | **90.4** | **38.5** | **64.1** | 19.1 | 27.4 | 49.1 |
97
+ | [`DART-Math-Llama-3-70B` (Prop2Diff)](https://huggingface.co/hkust-nlp/dart-math-llama3-70b-prop2diff) | **56.1** | 89.6 | 37.9 | **64.1** | **20.0** | **28.2** | **49.3** |
98
+ | DeepSeekMath-7B-MetaMath | 43.7 | 81.8 | 33.7 | 53.0 | 13.6 | 23.2 | 41.5 |
99
+ | [DeepSeekMath-7B-RL](https://huggingface.co/deepseek-ai/deepseek-math-7b-rl) | 53.1 | 88.4 | 41.3 | 58.3 | 18.7 | 35.9 | 49.3 |
100
+ | [`DART-Math-DSMath-7B` (Uniform)](https://huggingface.co/hkust-nlp/dart-math-dsmath-7b-uniform) | 52.9 | **88.2** | 40.1 | 60.2 | 21.3 | **32.5** | 49.2 |
101
+ | [`DART-Math-DSMath-7B` (Prop2Diff)](https://huggingface.co/hkust-nlp/dart-math-dsmath-7b-prop2diff) | **53.6** | 86.8 | **40.7** | **61.6** | **21.7** | 32.2 | **49.4** |
102
+ | Mistral-7B-MetaMath | 29.8 | 76.5 | 19.3 | 28.0 | 5.9 | 14.0 | 28.9 |
103
+ | [`DART-Math-Mistral-7B` (Uniform)](https://huggingface.co/hkust-nlp/dart-math-mistral-7b-uniform) | 43.5 | **82.6** | 26.9 | 42.0 | 13.2 | 16.4 | 27.4 |
104
+ | [`DART-Math-Mistral-7B` (Prop2Diff)](https://huggingface.co/hkust-nlp/dart-math-mistral-7b-prop2diff) | **45.5** | 81.1 | **29.4** | **45.1** | **14.7** | **17.0** | **38.8** |
105
+ | Llama-3-8B-MetaMath | 32.5 | 77.3 | 20.6 | 35.0 | 5.5 | 13.8 | 30.8 |
106
+ | [`DART-Math-Llama-3-8B` (Uniform)](https://huggingface.co/hkust-nlp/dart-math-llama3-8b-uniform) | 45.3 | **82.5** | 27.1 | **48.2** | 13.6 | 15.4 | 38.7 |
107
+ | [`DART-Math-Llama-3-8B` (Prop2Diff)](https://huggingface.co/hkust-nlp/dart-math-llama3-8b-prop2diff) | **46.6** | 81.1 | **28.8** | 48.0 | **14.5** | **19.4** | **39.7** |
108
+
109
+ ***Abbreviations**: College (CollegeMath), DM (DeepMind Mathematics), Olympiad (OlympiadBench-Math), Theorem (TheoremQA).
110
+ **Bold** means the best score by SFT on the respective base model here.
111
+ To reproduce our results, please refer to [the `DART-Math` GitHub repository](https://github.com/hkust-nlp/dart-math).*
112
+ ## Prompt Template
113
+ All the `DART-Math` models use the [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) prompt template:
114
+ ```
115
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction:\n{query}\n\n### Response:\n
116
+ ```
117
+ ## Training Dataset
118
+ We construct our traning datasets by applying **Difficulty-Aware Rejection Sampling** (`DARS`) to the **MATH and GSM8K** training sets.
119
+
120
+ `DARS` tackle **severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries**, in previous datasets.
121
+
122
+ These biases are primarily caused by vanilla rejection sampling, where **the same number of responses is
123
+ sampled for each query**, yet the likelihood of obtaining correct responses for difficult queries is significantly lower, sometimes even zero.
124
+
125
+ Please refer to [`DART-Math-Hard`](https://huggingface.co/datasets/hkust-nlp/dart-math-hard) / [`DART-Math-Uniform`](https://huggingface.co/datasets/hkust-nlp/dart-math-uniform) for more details.
126
+
127
+ ## Training Setup
128
+
129
+ We perform standard instruction tuning to several base models including Llama3-8B & Mistral-7B & Llama3-70B as representatives of general models and DeepSeekMath-
130
+ 7B as the representative of math-specialized model
131
+ on our synthetic datasets [`DART-Math-Hard`](https://huggingface.co/datasets/hkust-nlp/dart-math-hard) & [`DART-Math-Uniform`](https://huggingface.co/datasets/hkust-nlp/dart-math-uniform),
132
+ leading to `DART-Math (Prop2Diff)` & `DART-Math (Uniform)` respectively.
133
+
134
+ For simplicity, we keep most hyper-parameters the same across different models and datasets:
135
+
136
+ - Model max length (of [packed](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing) sequence): 4096
137
+ - Batch size: 64
138
+ - Warm-up ratio: 0.03
139
+ - Learning rate scheduler: cosine
140
+ - Prompt template: [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
141
+
142
+ Several other key hyper-parameters are tuned as follow:
143
+
144
+ | Base Model | Max. L.R. | # of Epochs | # of Grad. Acc. Steps | # of A100 GPUs |
145
+ |:--------------- | ---------:| -----------:| ---------------------:| --------------:|
146
+ | Mistral-7B | `1e-5` | 3 | 1 | 8 |
147
+ | Llama3-8B | `5e-5` | 1 | 2 | 8 |
148
+ | Llama3-70B | `2e-5` | 1 | 1 | 32 |
149
+ | DeepSeekMath-7B | `5e-5` | 3 | 1 | 8 |
150
+
151
+ - For **maximum learning rate**, we determine the values by **searching** through `1e-6,5e-6,1e-5,2e-5,5e-5,1e-4` according to the MATH performance after training on MMIQC for 1 epoch, except for Llama3-70B that is so expensive to search for that we derive from Llama3-8B’s learning rate in analogy to the relationship of (per-training) learning rates between [Llama2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) and [Llama2-70B](https://huggingface.co/meta-llama/Llama-2-70b-hf) (\~2:1).
152
+ - For **Llama3** models, preliminary experiments indicate that **training for 1 epoch consistently outperforms 3 epochs**.
153
+
154
+ Please refer to [Appendix A.1 of our paper](https://tongyx361.github.io/assets/dart-math/paper-dart-math.pdf) for more details.
155
+
156
+ ## Other Details
157
+
158
+ - For Mistral-7B-based models, we disable `sliding_window` by default following [the newest Mistral-7B-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3/blob/main/config.json) (Flash Attention 2 does not support `sliding_window` and XFormer backend in vLLM has throughput \~10% lower in our experiments.)
159
+
160
+ ## Citation
161
+
162
+ If you find our data, model or code useful for your work, please kindly cite [our paper](https://arxiv.org/abs/2407.13690):
163
+
164
+ ```latex
165
+ @article{tong2024dartmath,
166
+ title={DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving},
167
+ author={Yuxuan Tong and Xiwen Zhang and Rui Wang and Ruidong Wu and Junxian He},
168
+ year={2024},
169
+ eprint={2407.13690},
170
+ archivePrefix={arXiv},
171
+ primaryClass={cs.CL},
172
+ url={https://arxiv.org/abs/2407.13690},
173
+ }
174
+ ```