Upload ./training.log with huggingface_hub
Browse files- training.log +507 -0
training.log
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-24 16:55:43,926 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-24 16:55:43,927 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-24 16:55:43,927 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-24 16:55:43,927 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
316 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /home/ubuntu/.flair/datasets/ner_icdar_europeana/fr
|
317 |
+
2023-10-24 16:55:43,927 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-24 16:55:43,927 Train: 7936 sentences
|
319 |
+
2023-10-24 16:55:43,927 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-24 16:55:43,928 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-24 16:55:43,928 Training Params:
|
322 |
+
2023-10-24 16:55:43,928 - learning_rate: "3e-05"
|
323 |
+
2023-10-24 16:55:43,928 - mini_batch_size: "4"
|
324 |
+
2023-10-24 16:55:43,928 - max_epochs: "10"
|
325 |
+
2023-10-24 16:55:43,928 - shuffle: "True"
|
326 |
+
2023-10-24 16:55:43,928 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-24 16:55:43,928 Plugins:
|
328 |
+
2023-10-24 16:55:43,928 - TensorboardLogger
|
329 |
+
2023-10-24 16:55:43,928 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-24 16:55:43,928 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-24 16:55:43,928 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-24 16:55:43,928 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-24 16:55:43,928 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-24 16:55:43,928 Computation:
|
335 |
+
2023-10-24 16:55:43,928 - compute on device: cuda:0
|
336 |
+
2023-10-24 16:55:43,928 - embedding storage: none
|
337 |
+
2023-10-24 16:55:43,928 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-24 16:55:43,928 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
339 |
+
2023-10-24 16:55:43,928 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-24 16:55:43,928 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-24 16:55:43,928 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-24 16:55:56,135 epoch 1 - iter 198/1984 - loss 1.38943938 - time (sec): 12.21 - samples/sec: 1429.33 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-24 16:56:08,160 epoch 1 - iter 396/1984 - loss 0.87338015 - time (sec): 24.23 - samples/sec: 1389.55 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-24 16:56:20,110 epoch 1 - iter 594/1984 - loss 0.65982021 - time (sec): 36.18 - samples/sec: 1357.07 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-24 16:56:32,204 epoch 1 - iter 792/1984 - loss 0.53649000 - time (sec): 48.28 - samples/sec: 1359.51 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-24 16:56:44,187 epoch 1 - iter 990/1984 - loss 0.46413907 - time (sec): 60.26 - samples/sec: 1349.64 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-24 16:56:56,148 epoch 1 - iter 1188/1984 - loss 0.41329533 - time (sec): 72.22 - samples/sec: 1344.79 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-24 16:57:08,421 epoch 1 - iter 1386/1984 - loss 0.36950313 - time (sec): 84.49 - samples/sec: 1347.81 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-24 16:57:20,569 epoch 1 - iter 1584/1984 - loss 0.33972792 - time (sec): 96.64 - samples/sec: 1348.12 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-24 16:57:32,795 epoch 1 - iter 1782/1984 - loss 0.31934420 - time (sec): 108.87 - samples/sec: 1353.02 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-24 16:57:44,981 epoch 1 - iter 1980/1984 - loss 0.30139055 - time (sec): 121.05 - samples/sec: 1351.60 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-24 16:57:45,234 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-24 16:57:45,234 EPOCH 1 done: loss 0.3010 - lr: 0.000030
|
354 |
+
2023-10-24 16:57:48,301 DEV : loss 0.08988756686449051 - f1-score (micro avg) 0.7331
|
355 |
+
2023-10-24 16:57:48,316 saving best model
|
356 |
+
2023-10-24 16:57:48,785 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-24 16:58:00,799 epoch 2 - iter 198/1984 - loss 0.11015239 - time (sec): 12.01 - samples/sec: 1357.08 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-24 16:58:12,903 epoch 2 - iter 396/1984 - loss 0.11165230 - time (sec): 24.12 - samples/sec: 1347.03 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-24 16:58:24,975 epoch 2 - iter 594/1984 - loss 0.11377525 - time (sec): 36.19 - samples/sec: 1350.17 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-24 16:58:37,241 epoch 2 - iter 792/1984 - loss 0.11506086 - time (sec): 48.46 - samples/sec: 1353.84 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-24 16:58:49,374 epoch 2 - iter 990/1984 - loss 0.11305507 - time (sec): 60.59 - samples/sec: 1360.09 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-24 16:59:01,455 epoch 2 - iter 1188/1984 - loss 0.11198699 - time (sec): 72.67 - samples/sec: 1358.52 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-24 16:59:13,628 epoch 2 - iter 1386/1984 - loss 0.11098977 - time (sec): 84.84 - samples/sec: 1361.77 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-24 16:59:25,721 epoch 2 - iter 1584/1984 - loss 0.10937736 - time (sec): 96.94 - samples/sec: 1353.64 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-24 16:59:37,810 epoch 2 - iter 1782/1984 - loss 0.11058550 - time (sec): 109.02 - samples/sec: 1350.06 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-24 16:59:50,060 epoch 2 - iter 1980/1984 - loss 0.11259310 - time (sec): 121.27 - samples/sec: 1350.04 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-24 16:59:50,293 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-24 16:59:50,293 EPOCH 2 done: loss 0.1125 - lr: 0.000027
|
369 |
+
2023-10-24 16:59:53,708 DEV : loss 0.09264685958623886 - f1-score (micro avg) 0.7178
|
370 |
+
2023-10-24 16:59:53,723 ----------------------------------------------------------------------------------------------------
|
371 |
+
2023-10-24 17:00:05,764 epoch 3 - iter 198/1984 - loss 0.07194458 - time (sec): 12.04 - samples/sec: 1344.06 - lr: 0.000026 - momentum: 0.000000
|
372 |
+
2023-10-24 17:00:17,986 epoch 3 - iter 396/1984 - loss 0.07937385 - time (sec): 24.26 - samples/sec: 1357.81 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-24 17:00:30,051 epoch 3 - iter 594/1984 - loss 0.08581189 - time (sec): 36.33 - samples/sec: 1345.29 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-24 17:00:42,040 epoch 3 - iter 792/1984 - loss 0.08360831 - time (sec): 48.32 - samples/sec: 1340.89 - lr: 0.000025 - momentum: 0.000000
|
375 |
+
2023-10-24 17:00:54,457 epoch 3 - iter 990/1984 - loss 0.08135214 - time (sec): 60.73 - samples/sec: 1356.85 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-24 17:01:06,626 epoch 3 - iter 1188/1984 - loss 0.08288010 - time (sec): 72.90 - samples/sec: 1355.03 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-24 17:01:18,609 epoch 3 - iter 1386/1984 - loss 0.08319010 - time (sec): 84.89 - samples/sec: 1351.84 - lr: 0.000024 - momentum: 0.000000
|
378 |
+
2023-10-24 17:01:30,806 epoch 3 - iter 1584/1984 - loss 0.08252110 - time (sec): 97.08 - samples/sec: 1352.96 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-24 17:01:42,960 epoch 3 - iter 1782/1984 - loss 0.08183765 - time (sec): 109.24 - samples/sec: 1353.28 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-24 17:01:54,990 epoch 3 - iter 1980/1984 - loss 0.08232756 - time (sec): 121.27 - samples/sec: 1350.29 - lr: 0.000023 - momentum: 0.000000
|
381 |
+
2023-10-24 17:01:55,227 ----------------------------------------------------------------------------------------------------
|
382 |
+
2023-10-24 17:01:55,228 EPOCH 3 done: loss 0.0823 - lr: 0.000023
|
383 |
+
2023-10-24 17:01:58,337 DEV : loss 0.12425895780324936 - f1-score (micro avg) 0.748
|
384 |
+
2023-10-24 17:01:58,353 saving best model
|
385 |
+
2023-10-24 17:01:58,959 ----------------------------------------------------------------------------------------------------
|
386 |
+
2023-10-24 17:02:10,932 epoch 4 - iter 198/1984 - loss 0.05660289 - time (sec): 11.97 - samples/sec: 1320.40 - lr: 0.000023 - momentum: 0.000000
|
387 |
+
2023-10-24 17:02:23,327 epoch 4 - iter 396/1984 - loss 0.06137809 - time (sec): 24.37 - samples/sec: 1345.54 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-24 17:02:35,490 epoch 4 - iter 594/1984 - loss 0.05994790 - time (sec): 36.53 - samples/sec: 1347.81 - lr: 0.000022 - momentum: 0.000000
|
389 |
+
2023-10-24 17:02:47,476 epoch 4 - iter 792/1984 - loss 0.06293485 - time (sec): 48.52 - samples/sec: 1342.62 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-24 17:02:59,577 epoch 4 - iter 990/1984 - loss 0.06173995 - time (sec): 60.62 - samples/sec: 1346.36 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-24 17:03:11,344 epoch 4 - iter 1188/1984 - loss 0.06025572 - time (sec): 72.38 - samples/sec: 1331.03 - lr: 0.000021 - momentum: 0.000000
|
392 |
+
2023-10-24 17:03:23,543 epoch 4 - iter 1386/1984 - loss 0.06154385 - time (sec): 84.58 - samples/sec: 1341.57 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-24 17:03:35,705 epoch 4 - iter 1584/1984 - loss 0.06060378 - time (sec): 96.74 - samples/sec: 1340.90 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-24 17:03:48,022 epoch 4 - iter 1782/1984 - loss 0.06089033 - time (sec): 109.06 - samples/sec: 1341.13 - lr: 0.000020 - momentum: 0.000000
|
395 |
+
2023-10-24 17:04:00,486 epoch 4 - iter 1980/1984 - loss 0.06041258 - time (sec): 121.53 - samples/sec: 1346.67 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-24 17:04:00,727 ----------------------------------------------------------------------------------------------------
|
397 |
+
2023-10-24 17:04:00,727 EPOCH 4 done: loss 0.0603 - lr: 0.000020
|
398 |
+
2023-10-24 17:04:03,851 DEV : loss 0.17354941368103027 - f1-score (micro avg) 0.7452
|
399 |
+
2023-10-24 17:04:03,866 ----------------------------------------------------------------------------------------------------
|
400 |
+
2023-10-24 17:04:16,120 epoch 5 - iter 198/1984 - loss 0.03818146 - time (sec): 12.25 - samples/sec: 1386.56 - lr: 0.000020 - momentum: 0.000000
|
401 |
+
2023-10-24 17:04:28,224 epoch 5 - iter 396/1984 - loss 0.04086454 - time (sec): 24.36 - samples/sec: 1355.49 - lr: 0.000019 - momentum: 0.000000
|
402 |
+
2023-10-24 17:04:40,492 epoch 5 - iter 594/1984 - loss 0.04353732 - time (sec): 36.62 - samples/sec: 1353.93 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-24 17:04:52,589 epoch 5 - iter 792/1984 - loss 0.04314748 - time (sec): 48.72 - samples/sec: 1339.17 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-24 17:05:04,686 epoch 5 - iter 990/1984 - loss 0.04590035 - time (sec): 60.82 - samples/sec: 1347.08 - lr: 0.000018 - momentum: 0.000000
|
405 |
+
2023-10-24 17:05:16,672 epoch 5 - iter 1188/1984 - loss 0.04501377 - time (sec): 72.81 - samples/sec: 1343.70 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-24 17:05:28,989 epoch 5 - iter 1386/1984 - loss 0.04487474 - time (sec): 85.12 - samples/sec: 1348.08 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-24 17:05:41,166 epoch 5 - iter 1584/1984 - loss 0.04660773 - time (sec): 97.30 - samples/sec: 1347.44 - lr: 0.000017 - momentum: 0.000000
|
408 |
+
2023-10-24 17:05:53,109 epoch 5 - iter 1782/1984 - loss 0.04691609 - time (sec): 109.24 - samples/sec: 1345.32 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-24 17:06:05,294 epoch 5 - iter 1980/1984 - loss 0.04565686 - time (sec): 121.43 - samples/sec: 1347.64 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-24 17:06:05,541 ----------------------------------------------------------------------------------------------------
|
411 |
+
2023-10-24 17:06:05,541 EPOCH 5 done: loss 0.0458 - lr: 0.000017
|
412 |
+
2023-10-24 17:06:08,662 DEV : loss 0.21091219782829285 - f1-score (micro avg) 0.7348
|
413 |
+
2023-10-24 17:06:08,678 ----------------------------------------------------------------------------------------------------
|
414 |
+
2023-10-24 17:06:20,950 epoch 6 - iter 198/1984 - loss 0.03634734 - time (sec): 12.27 - samples/sec: 1323.11 - lr: 0.000016 - momentum: 0.000000
|
415 |
+
2023-10-24 17:06:33,123 epoch 6 - iter 396/1984 - loss 0.03594311 - time (sec): 24.44 - samples/sec: 1350.94 - lr: 0.000016 - momentum: 0.000000
|
416 |
+
2023-10-24 17:06:45,222 epoch 6 - iter 594/1984 - loss 0.03443057 - time (sec): 36.54 - samples/sec: 1356.66 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-24 17:06:57,225 epoch 6 - iter 792/1984 - loss 0.03374808 - time (sec): 48.55 - samples/sec: 1356.48 - lr: 0.000015 - momentum: 0.000000
|
418 |
+
2023-10-24 17:07:09,782 epoch 6 - iter 990/1984 - loss 0.03467893 - time (sec): 61.10 - samples/sec: 1352.93 - lr: 0.000015 - momentum: 0.000000
|
419 |
+
2023-10-24 17:07:21,887 epoch 6 - iter 1188/1984 - loss 0.03450278 - time (sec): 73.21 - samples/sec: 1347.25 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-24 17:07:33,957 epoch 6 - iter 1386/1984 - loss 0.03433692 - time (sec): 85.28 - samples/sec: 1341.65 - lr: 0.000014 - momentum: 0.000000
|
421 |
+
2023-10-24 17:07:46,058 epoch 6 - iter 1584/1984 - loss 0.03334634 - time (sec): 97.38 - samples/sec: 1342.51 - lr: 0.000014 - momentum: 0.000000
|
422 |
+
2023-10-24 17:07:58,090 epoch 6 - iter 1782/1984 - loss 0.03396585 - time (sec): 109.41 - samples/sec: 1336.77 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-24 17:08:10,180 epoch 6 - iter 1980/1984 - loss 0.03474326 - time (sec): 121.50 - samples/sec: 1347.16 - lr: 0.000013 - momentum: 0.000000
|
424 |
+
2023-10-24 17:08:10,422 ----------------------------------------------------------------------------------------------------
|
425 |
+
2023-10-24 17:08:10,422 EPOCH 6 done: loss 0.0347 - lr: 0.000013
|
426 |
+
2023-10-24 17:08:13,549 DEV : loss 0.1887310892343521 - f1-score (micro avg) 0.7538
|
427 |
+
2023-10-24 17:08:13,565 saving best model
|
428 |
+
2023-10-24 17:08:14,156 ----------------------------------------------------------------------------------------------------
|
429 |
+
2023-10-24 17:08:26,505 epoch 7 - iter 198/1984 - loss 0.02827359 - time (sec): 12.35 - samples/sec: 1359.01 - lr: 0.000013 - momentum: 0.000000
|
430 |
+
2023-10-24 17:08:38,484 epoch 7 - iter 396/1984 - loss 0.02865567 - time (sec): 24.33 - samples/sec: 1334.37 - lr: 0.000013 - momentum: 0.000000
|
431 |
+
2023-10-24 17:08:50,648 epoch 7 - iter 594/1984 - loss 0.02475648 - time (sec): 36.49 - samples/sec: 1335.51 - lr: 0.000012 - momentum: 0.000000
|
432 |
+
2023-10-24 17:09:02,801 epoch 7 - iter 792/1984 - loss 0.02504839 - time (sec): 48.64 - samples/sec: 1324.60 - lr: 0.000012 - momentum: 0.000000
|
433 |
+
2023-10-24 17:09:14,867 epoch 7 - iter 990/1984 - loss 0.02489200 - time (sec): 60.71 - samples/sec: 1323.82 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-24 17:09:27,252 epoch 7 - iter 1188/1984 - loss 0.02447758 - time (sec): 73.10 - samples/sec: 1338.12 - lr: 0.000011 - momentum: 0.000000
|
435 |
+
2023-10-24 17:09:39,473 epoch 7 - iter 1386/1984 - loss 0.02467051 - time (sec): 85.32 - samples/sec: 1344.90 - lr: 0.000011 - momentum: 0.000000
|
436 |
+
2023-10-24 17:09:51,517 epoch 7 - iter 1584/1984 - loss 0.02483831 - time (sec): 97.36 - samples/sec: 1345.72 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-24 17:10:03,564 epoch 7 - iter 1782/1984 - loss 0.02499026 - time (sec): 109.41 - samples/sec: 1346.91 - lr: 0.000010 - momentum: 0.000000
|
438 |
+
2023-10-24 17:10:15,630 epoch 7 - iter 1980/1984 - loss 0.02535832 - time (sec): 121.47 - samples/sec: 1346.06 - lr: 0.000010 - momentum: 0.000000
|
439 |
+
2023-10-24 17:10:15,884 ----------------------------------------------------------------------------------------------------
|
440 |
+
2023-10-24 17:10:15,884 EPOCH 7 done: loss 0.0253 - lr: 0.000010
|
441 |
+
2023-10-24 17:10:19,005 DEV : loss 0.2231946587562561 - f1-score (micro avg) 0.7507
|
442 |
+
2023-10-24 17:10:19,021 ----------------------------------------------------------------------------------------------------
|
443 |
+
2023-10-24 17:10:31,676 epoch 8 - iter 198/1984 - loss 0.01362913 - time (sec): 12.65 - samples/sec: 1371.16 - lr: 0.000010 - momentum: 0.000000
|
444 |
+
2023-10-24 17:10:43,986 epoch 8 - iter 396/1984 - loss 0.01453365 - time (sec): 24.96 - samples/sec: 1368.42 - lr: 0.000009 - momentum: 0.000000
|
445 |
+
2023-10-24 17:10:55,962 epoch 8 - iter 594/1984 - loss 0.01371635 - time (sec): 36.94 - samples/sec: 1345.54 - lr: 0.000009 - momentum: 0.000000
|
446 |
+
2023-10-24 17:11:08,188 epoch 8 - iter 792/1984 - loss 0.01363124 - time (sec): 49.17 - samples/sec: 1338.60 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-24 17:11:20,225 epoch 8 - iter 990/1984 - loss 0.01455714 - time (sec): 61.20 - samples/sec: 1334.80 - lr: 0.000008 - momentum: 0.000000
|
448 |
+
2023-10-24 17:11:32,426 epoch 8 - iter 1188/1984 - loss 0.01600626 - time (sec): 73.40 - samples/sec: 1346.37 - lr: 0.000008 - momentum: 0.000000
|
449 |
+
2023-10-24 17:11:44,542 epoch 8 - iter 1386/1984 - loss 0.01607764 - time (sec): 85.52 - samples/sec: 1348.15 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-24 17:11:56,395 epoch 8 - iter 1584/1984 - loss 0.01596874 - time (sec): 97.37 - samples/sec: 1339.42 - lr: 0.000007 - momentum: 0.000000
|
451 |
+
2023-10-24 17:12:08,622 epoch 8 - iter 1782/1984 - loss 0.01600345 - time (sec): 109.60 - samples/sec: 1340.49 - lr: 0.000007 - momentum: 0.000000
|
452 |
+
2023-10-24 17:12:20,768 epoch 8 - iter 1980/1984 - loss 0.01670679 - time (sec): 121.75 - samples/sec: 1344.01 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-24 17:12:21,005 ----------------------------------------------------------------------------------------------------
|
454 |
+
2023-10-24 17:12:21,005 EPOCH 8 done: loss 0.0167 - lr: 0.000007
|
455 |
+
2023-10-24 17:12:24,126 DEV : loss 0.2260325700044632 - f1-score (micro avg) 0.7547
|
456 |
+
2023-10-24 17:12:24,142 saving best model
|
457 |
+
2023-10-24 17:12:24,734 ----------------------------------------------------------------------------------------------------
|
458 |
+
2023-10-24 17:12:36,802 epoch 9 - iter 198/1984 - loss 0.01167945 - time (sec): 12.07 - samples/sec: 1314.60 - lr: 0.000006 - momentum: 0.000000
|
459 |
+
2023-10-24 17:12:48,856 epoch 9 - iter 396/1984 - loss 0.01028989 - time (sec): 24.12 - samples/sec: 1310.79 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-24 17:13:00,869 epoch 9 - iter 594/1984 - loss 0.01244219 - time (sec): 36.13 - samples/sec: 1307.66 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-24 17:13:13,465 epoch 9 - iter 792/1984 - loss 0.01152707 - time (sec): 48.73 - samples/sec: 1326.87 - lr: 0.000005 - momentum: 0.000000
|
462 |
+
2023-10-24 17:13:25,772 epoch 9 - iter 990/1984 - loss 0.01079042 - time (sec): 61.04 - samples/sec: 1339.77 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-24 17:13:38,011 epoch 9 - iter 1188/1984 - loss 0.01084398 - time (sec): 73.28 - samples/sec: 1342.98 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-24 17:13:50,001 epoch 9 - iter 1386/1984 - loss 0.01095687 - time (sec): 85.27 - samples/sec: 1342.23 - lr: 0.000004 - momentum: 0.000000
|
465 |
+
2023-10-24 17:14:02,064 epoch 9 - iter 1584/1984 - loss 0.01043359 - time (sec): 97.33 - samples/sec: 1342.13 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-24 17:14:14,071 epoch 9 - iter 1782/1984 - loss 0.01070738 - time (sec): 109.34 - samples/sec: 1343.09 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-24 17:14:26,147 epoch 9 - iter 1980/1984 - loss 0.01099379 - time (sec): 121.41 - samples/sec: 1348.31 - lr: 0.000003 - momentum: 0.000000
|
468 |
+
2023-10-24 17:14:26,381 ----------------------------------------------------------------------------------------------------
|
469 |
+
2023-10-24 17:14:26,381 EPOCH 9 done: loss 0.0110 - lr: 0.000003
|
470 |
+
2023-10-24 17:14:29,825 DEV : loss 0.24125918745994568 - f1-score (micro avg) 0.7639
|
471 |
+
2023-10-24 17:14:29,841 saving best model
|
472 |
+
2023-10-24 17:14:30,454 ----------------------------------------------------------------------------------------------------
|
473 |
+
2023-10-24 17:14:42,411 epoch 10 - iter 198/1984 - loss 0.00345145 - time (sec): 11.96 - samples/sec: 1355.66 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-24 17:14:54,503 epoch 10 - iter 396/1984 - loss 0.00398821 - time (sec): 24.05 - samples/sec: 1344.86 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-24 17:15:06,668 epoch 10 - iter 594/1984 - loss 0.00606419 - time (sec): 36.21 - samples/sec: 1355.76 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-24 17:15:18,803 epoch 10 - iter 792/1984 - loss 0.00655537 - time (sec): 48.35 - samples/sec: 1368.69 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-24 17:15:30,830 epoch 10 - iter 990/1984 - loss 0.00666700 - time (sec): 60.38 - samples/sec: 1363.80 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-24 17:15:42,958 epoch 10 - iter 1188/1984 - loss 0.00648338 - time (sec): 72.50 - samples/sec: 1355.06 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-24 17:15:55,093 epoch 10 - iter 1386/1984 - loss 0.00695280 - time (sec): 84.64 - samples/sec: 1354.00 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-24 17:16:07,044 epoch 10 - iter 1584/1984 - loss 0.00694583 - time (sec): 96.59 - samples/sec: 1348.02 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-24 17:16:19,281 epoch 10 - iter 1782/1984 - loss 0.00731465 - time (sec): 108.83 - samples/sec: 1348.88 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-24 17:16:31,552 epoch 10 - iter 1980/1984 - loss 0.00719445 - time (sec): 121.10 - samples/sec: 1351.26 - lr: 0.000000 - momentum: 0.000000
|
483 |
+
2023-10-24 17:16:31,799 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-24 17:16:31,799 EPOCH 10 done: loss 0.0072 - lr: 0.000000
|
485 |
+
2023-10-24 17:16:34,920 DEV : loss 0.24395139515399933 - f1-score (micro avg) 0.7747
|
486 |
+
2023-10-24 17:16:34,936 saving best model
|
487 |
+
2023-10-24 17:16:35,995 ----------------------------------------------------------------------------------------------------
|
488 |
+
2023-10-24 17:16:35,996 Loading model from best epoch ...
|
489 |
+
2023-10-24 17:16:37,468 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
490 |
+
2023-10-24 17:16:40,539
|
491 |
+
Results:
|
492 |
+
- F-score (micro) 0.7847
|
493 |
+
- F-score (macro) 0.7007
|
494 |
+
- Accuracy 0.6667
|
495 |
+
|
496 |
+
By class:
|
497 |
+
precision recall f1-score support
|
498 |
+
|
499 |
+
LOC 0.8338 0.8580 0.8457 655
|
500 |
+
PER 0.6923 0.8072 0.7453 223
|
501 |
+
ORG 0.5800 0.4567 0.5110 127
|
502 |
+
|
503 |
+
micro avg 0.7737 0.7960 0.7847 1005
|
504 |
+
macro avg 0.7020 0.7073 0.7007 1005
|
505 |
+
weighted avg 0.7704 0.7960 0.7812 1005
|
506 |
+
|
507 |
+
2023-10-24 17:16:40,539 ----------------------------------------------------------------------------------------------------
|