File size: 24,213 Bytes
4561ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
2023-10-18 15:59:38,444 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,444 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 15:59:38,444 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,444 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-18 15:59:38,444 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,444 Train:  1214 sentences
2023-10-18 15:59:38,444         (train_with_dev=False, train_with_test=False)
2023-10-18 15:59:38,444 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,445 Training Params:
2023-10-18 15:59:38,445  - learning_rate: "5e-05" 
2023-10-18 15:59:38,445  - mini_batch_size: "4"
2023-10-18 15:59:38,445  - max_epochs: "10"
2023-10-18 15:59:38,445  - shuffle: "True"
2023-10-18 15:59:38,445 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,445 Plugins:
2023-10-18 15:59:38,445  - TensorboardLogger
2023-10-18 15:59:38,445  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 15:59:38,445 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,445 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 15:59:38,445  - metric: "('micro avg', 'f1-score')"
2023-10-18 15:59:38,445 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,445 Computation:
2023-10-18 15:59:38,445  - compute on device: cuda:0
2023-10-18 15:59:38,445  - embedding storage: none
2023-10-18 15:59:38,445 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,445 Model training base path: "hmbench-ajmc/en-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-18 15:59:38,445 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,445 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:38,445 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 15:59:38,893 epoch 1 - iter 30/304 - loss 4.02439859 - time (sec): 0.45 - samples/sec: 6908.01 - lr: 0.000005 - momentum: 0.000000
2023-10-18 15:59:39,332 epoch 1 - iter 60/304 - loss 3.94799824 - time (sec): 0.89 - samples/sec: 6775.15 - lr: 0.000010 - momentum: 0.000000
2023-10-18 15:59:39,798 epoch 1 - iter 90/304 - loss 3.77027124 - time (sec): 1.35 - samples/sec: 6645.20 - lr: 0.000015 - momentum: 0.000000
2023-10-18 15:59:40,240 epoch 1 - iter 120/304 - loss 3.52488959 - time (sec): 1.79 - samples/sec: 6631.52 - lr: 0.000020 - momentum: 0.000000
2023-10-18 15:59:40,680 epoch 1 - iter 150/304 - loss 3.22781102 - time (sec): 2.23 - samples/sec: 6620.98 - lr: 0.000025 - momentum: 0.000000
2023-10-18 15:59:41,127 epoch 1 - iter 180/304 - loss 2.92761720 - time (sec): 2.68 - samples/sec: 6552.60 - lr: 0.000029 - momentum: 0.000000
2023-10-18 15:59:41,584 epoch 1 - iter 210/304 - loss 2.61647495 - time (sec): 3.14 - samples/sec: 6656.08 - lr: 0.000034 - momentum: 0.000000
2023-10-18 15:59:42,044 epoch 1 - iter 240/304 - loss 2.38351652 - time (sec): 3.60 - samples/sec: 6683.60 - lr: 0.000039 - momentum: 0.000000
2023-10-18 15:59:42,493 epoch 1 - iter 270/304 - loss 2.18072309 - time (sec): 4.05 - samples/sec: 6762.41 - lr: 0.000044 - momentum: 0.000000
2023-10-18 15:59:42,947 epoch 1 - iter 300/304 - loss 2.03065121 - time (sec): 4.50 - samples/sec: 6818.46 - lr: 0.000049 - momentum: 0.000000
2023-10-18 15:59:43,004 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:43,004 EPOCH 1 done: loss 2.0164 - lr: 0.000049
2023-10-18 15:59:43,462 DEV : loss 0.7537270188331604 - f1-score (micro avg)  0.0
2023-10-18 15:59:43,467 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:43,917 epoch 2 - iter 30/304 - loss 0.67693457 - time (sec): 0.45 - samples/sec: 7263.16 - lr: 0.000049 - momentum: 0.000000
2023-10-18 15:59:44,381 epoch 2 - iter 60/304 - loss 0.68249441 - time (sec): 0.91 - samples/sec: 6828.38 - lr: 0.000049 - momentum: 0.000000
2023-10-18 15:59:44,855 epoch 2 - iter 90/304 - loss 0.68860219 - time (sec): 1.39 - samples/sec: 6743.02 - lr: 0.000048 - momentum: 0.000000
2023-10-18 15:59:45,375 epoch 2 - iter 120/304 - loss 0.68478765 - time (sec): 1.91 - samples/sec: 6636.08 - lr: 0.000048 - momentum: 0.000000
2023-10-18 15:59:45,842 epoch 2 - iter 150/304 - loss 0.64870052 - time (sec): 2.37 - samples/sec: 6488.58 - lr: 0.000047 - momentum: 0.000000
2023-10-18 15:59:46,320 epoch 2 - iter 180/304 - loss 0.64138183 - time (sec): 2.85 - samples/sec: 6412.79 - lr: 0.000047 - momentum: 0.000000
2023-10-18 15:59:46,774 epoch 2 - iter 210/304 - loss 0.60885352 - time (sec): 3.31 - samples/sec: 6538.11 - lr: 0.000046 - momentum: 0.000000
2023-10-18 15:59:47,232 epoch 2 - iter 240/304 - loss 0.59175345 - time (sec): 3.76 - samples/sec: 6515.91 - lr: 0.000046 - momentum: 0.000000
2023-10-18 15:59:47,681 epoch 2 - iter 270/304 - loss 0.58324719 - time (sec): 4.21 - samples/sec: 6578.92 - lr: 0.000045 - momentum: 0.000000
2023-10-18 15:59:48,135 epoch 2 - iter 300/304 - loss 0.58565562 - time (sec): 4.67 - samples/sec: 6569.76 - lr: 0.000045 - momentum: 0.000000
2023-10-18 15:59:48,196 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:48,196 EPOCH 2 done: loss 0.5838 - lr: 0.000045
2023-10-18 15:59:48,694 DEV : loss 0.39393150806427 - f1-score (micro avg)  0.2408
2023-10-18 15:59:48,699 saving best model
2023-10-18 15:59:48,728 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:49,181 epoch 3 - iter 30/304 - loss 0.42728775 - time (sec): 0.45 - samples/sec: 6484.68 - lr: 0.000044 - momentum: 0.000000
2023-10-18 15:59:49,667 epoch 3 - iter 60/304 - loss 0.43840468 - time (sec): 0.94 - samples/sec: 6754.01 - lr: 0.000043 - momentum: 0.000000
2023-10-18 15:59:50,138 epoch 3 - iter 90/304 - loss 0.43340952 - time (sec): 1.41 - samples/sec: 6653.01 - lr: 0.000043 - momentum: 0.000000
2023-10-18 15:59:50,622 epoch 3 - iter 120/304 - loss 0.42193644 - time (sec): 1.89 - samples/sec: 6790.83 - lr: 0.000042 - momentum: 0.000000
2023-10-18 15:59:51,123 epoch 3 - iter 150/304 - loss 0.41461292 - time (sec): 2.39 - samples/sec: 6665.34 - lr: 0.000042 - momentum: 0.000000
2023-10-18 15:59:51,586 epoch 3 - iter 180/304 - loss 0.42630692 - time (sec): 2.86 - samples/sec: 6629.85 - lr: 0.000041 - momentum: 0.000000
2023-10-18 15:59:52,043 epoch 3 - iter 210/304 - loss 0.42817892 - time (sec): 3.31 - samples/sec: 6581.34 - lr: 0.000041 - momentum: 0.000000
2023-10-18 15:59:52,481 epoch 3 - iter 240/304 - loss 0.41490933 - time (sec): 3.75 - samples/sec: 6564.30 - lr: 0.000040 - momentum: 0.000000
2023-10-18 15:59:52,929 epoch 3 - iter 270/304 - loss 0.41477427 - time (sec): 4.20 - samples/sec: 6579.62 - lr: 0.000040 - momentum: 0.000000
2023-10-18 15:59:53,383 epoch 3 - iter 300/304 - loss 0.40965081 - time (sec): 4.65 - samples/sec: 6576.98 - lr: 0.000039 - momentum: 0.000000
2023-10-18 15:59:53,440 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:53,440 EPOCH 3 done: loss 0.4082 - lr: 0.000039
2023-10-18 15:59:53,951 DEV : loss 0.32593443989753723 - f1-score (micro avg)  0.4345
2023-10-18 15:59:53,957 saving best model
2023-10-18 15:59:53,996 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:54,450 epoch 4 - iter 30/304 - loss 0.34255467 - time (sec): 0.45 - samples/sec: 6790.88 - lr: 0.000038 - momentum: 0.000000
2023-10-18 15:59:54,894 epoch 4 - iter 60/304 - loss 0.39274816 - time (sec): 0.90 - samples/sec: 6877.07 - lr: 0.000038 - momentum: 0.000000
2023-10-18 15:59:55,348 epoch 4 - iter 90/304 - loss 0.37778060 - time (sec): 1.35 - samples/sec: 6903.74 - lr: 0.000037 - momentum: 0.000000
2023-10-18 15:59:55,815 epoch 4 - iter 120/304 - loss 0.37593215 - time (sec): 1.82 - samples/sec: 6776.34 - lr: 0.000037 - momentum: 0.000000
2023-10-18 15:59:56,274 epoch 4 - iter 150/304 - loss 0.36040013 - time (sec): 2.28 - samples/sec: 6707.14 - lr: 0.000036 - momentum: 0.000000
2023-10-18 15:59:56,717 epoch 4 - iter 180/304 - loss 0.35667086 - time (sec): 2.72 - samples/sec: 6684.37 - lr: 0.000036 - momentum: 0.000000
2023-10-18 15:59:57,173 epoch 4 - iter 210/304 - loss 0.35194304 - time (sec): 3.18 - samples/sec: 6724.60 - lr: 0.000035 - momentum: 0.000000
2023-10-18 15:59:57,624 epoch 4 - iter 240/304 - loss 0.34062892 - time (sec): 3.63 - samples/sec: 6771.82 - lr: 0.000035 - momentum: 0.000000
2023-10-18 15:59:58,077 epoch 4 - iter 270/304 - loss 0.33268323 - time (sec): 4.08 - samples/sec: 6742.26 - lr: 0.000034 - momentum: 0.000000
2023-10-18 15:59:58,528 epoch 4 - iter 300/304 - loss 0.33151212 - time (sec): 4.53 - samples/sec: 6759.21 - lr: 0.000033 - momentum: 0.000000
2023-10-18 15:59:58,582 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:58,582 EPOCH 4 done: loss 0.3309 - lr: 0.000033
2023-10-18 15:59:59,095 DEV : loss 0.29030725359916687 - f1-score (micro avg)  0.4636
2023-10-18 15:59:59,101 saving best model
2023-10-18 15:59:59,136 ----------------------------------------------------------------------------------------------------
2023-10-18 15:59:59,589 epoch 5 - iter 30/304 - loss 0.30069451 - time (sec): 0.45 - samples/sec: 6982.39 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:00:00,045 epoch 5 - iter 60/304 - loss 0.32261811 - time (sec): 0.91 - samples/sec: 7065.54 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:00:00,500 epoch 5 - iter 90/304 - loss 0.29691347 - time (sec): 1.36 - samples/sec: 7070.53 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:00:00,962 epoch 5 - iter 120/304 - loss 0.28228503 - time (sec): 1.83 - samples/sec: 6873.42 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:00:01,424 epoch 5 - iter 150/304 - loss 0.27506302 - time (sec): 2.29 - samples/sec: 6831.76 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:00:01,878 epoch 5 - iter 180/304 - loss 0.27966818 - time (sec): 2.74 - samples/sec: 6748.00 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:00:02,329 epoch 5 - iter 210/304 - loss 0.28859803 - time (sec): 3.19 - samples/sec: 6813.04 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:00:02,786 epoch 5 - iter 240/304 - loss 0.29244738 - time (sec): 3.65 - samples/sec: 6743.30 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:00:03,233 epoch 5 - iter 270/304 - loss 0.28822906 - time (sec): 4.10 - samples/sec: 6762.72 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:00:03,690 epoch 5 - iter 300/304 - loss 0.29090928 - time (sec): 4.55 - samples/sec: 6751.37 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:00:03,744 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:03,744 EPOCH 5 done: loss 0.2904 - lr: 0.000028
2023-10-18 16:00:04,278 DEV : loss 0.26164156198501587 - f1-score (micro avg)  0.5045
2023-10-18 16:00:04,283 saving best model
2023-10-18 16:00:04,319 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:04,772 epoch 6 - iter 30/304 - loss 0.28626393 - time (sec): 0.45 - samples/sec: 6235.37 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:00:05,211 epoch 6 - iter 60/304 - loss 0.27365340 - time (sec): 0.89 - samples/sec: 6403.24 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:00:05,666 epoch 6 - iter 90/304 - loss 0.26753734 - time (sec): 1.35 - samples/sec: 6724.20 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:00:06,122 epoch 6 - iter 120/304 - loss 0.28549914 - time (sec): 1.80 - samples/sec: 6700.80 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:00:06,578 epoch 6 - iter 150/304 - loss 0.27259411 - time (sec): 2.26 - samples/sec: 6743.60 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:00:07,035 epoch 6 - iter 180/304 - loss 0.27162046 - time (sec): 2.72 - samples/sec: 6713.65 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:00:07,499 epoch 6 - iter 210/304 - loss 0.26916890 - time (sec): 3.18 - samples/sec: 6705.00 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:00:07,951 epoch 6 - iter 240/304 - loss 0.26300420 - time (sec): 3.63 - samples/sec: 6679.51 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:00:08,408 epoch 6 - iter 270/304 - loss 0.26565702 - time (sec): 4.09 - samples/sec: 6643.81 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:00:08,886 epoch 6 - iter 300/304 - loss 0.26199835 - time (sec): 4.57 - samples/sec: 6699.47 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:00:08,945 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:08,945 EPOCH 6 done: loss 0.2617 - lr: 0.000022
2023-10-18 16:00:09,454 DEV : loss 0.25211378931999207 - f1-score (micro avg)  0.5287
2023-10-18 16:00:09,459 saving best model
2023-10-18 16:00:09,494 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:09,951 epoch 7 - iter 30/304 - loss 0.24943728 - time (sec): 0.46 - samples/sec: 6462.10 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:00:10,408 epoch 7 - iter 60/304 - loss 0.25514322 - time (sec): 0.91 - samples/sec: 6606.04 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:00:10,865 epoch 7 - iter 90/304 - loss 0.25104880 - time (sec): 1.37 - samples/sec: 6578.90 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:00:11,310 epoch 7 - iter 120/304 - loss 0.25691959 - time (sec): 1.81 - samples/sec: 6662.24 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:00:11,761 epoch 7 - iter 150/304 - loss 0.25712263 - time (sec): 2.27 - samples/sec: 6781.94 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:00:12,209 epoch 7 - iter 180/304 - loss 0.25996239 - time (sec): 2.71 - samples/sec: 6747.99 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:00:12,659 epoch 7 - iter 210/304 - loss 0.25169702 - time (sec): 3.16 - samples/sec: 6721.71 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:00:13,115 epoch 7 - iter 240/304 - loss 0.25021440 - time (sec): 3.62 - samples/sec: 6715.13 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:00:13,581 epoch 7 - iter 270/304 - loss 0.24382932 - time (sec): 4.09 - samples/sec: 6722.19 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:00:14,043 epoch 7 - iter 300/304 - loss 0.24830003 - time (sec): 4.55 - samples/sec: 6742.78 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:00:14,107 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:14,107 EPOCH 7 done: loss 0.2474 - lr: 0.000017
2023-10-18 16:00:14,609 DEV : loss 0.2437625378370285 - f1-score (micro avg)  0.5487
2023-10-18 16:00:14,614 saving best model
2023-10-18 16:00:14,649 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:15,121 epoch 8 - iter 30/304 - loss 0.22448797 - time (sec): 0.47 - samples/sec: 5622.44 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:00:15,595 epoch 8 - iter 60/304 - loss 0.23152462 - time (sec): 0.95 - samples/sec: 6010.92 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:00:16,068 epoch 8 - iter 90/304 - loss 0.21243463 - time (sec): 1.42 - samples/sec: 6088.48 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:00:16,566 epoch 8 - iter 120/304 - loss 0.23068737 - time (sec): 1.92 - samples/sec: 6156.13 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:00:17,042 epoch 8 - iter 150/304 - loss 0.23114576 - time (sec): 2.39 - samples/sec: 6336.38 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:00:17,499 epoch 8 - iter 180/304 - loss 0.23233799 - time (sec): 2.85 - samples/sec: 6309.95 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:00:17,942 epoch 8 - iter 210/304 - loss 0.23090640 - time (sec): 3.29 - samples/sec: 6464.13 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:00:18,388 epoch 8 - iter 240/304 - loss 0.23271789 - time (sec): 3.74 - samples/sec: 6553.42 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:00:18,864 epoch 8 - iter 270/304 - loss 0.23726179 - time (sec): 4.21 - samples/sec: 6553.74 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:00:19,319 epoch 8 - iter 300/304 - loss 0.23601616 - time (sec): 4.67 - samples/sec: 6567.33 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:00:19,375 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:19,376 EPOCH 8 done: loss 0.2358 - lr: 0.000011
2023-10-18 16:00:19,894 DEV : loss 0.23939570784568787 - f1-score (micro avg)  0.5522
2023-10-18 16:00:19,899 saving best model
2023-10-18 16:00:19,933 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:20,398 epoch 9 - iter 30/304 - loss 0.21473866 - time (sec): 0.46 - samples/sec: 6421.88 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:00:20,878 epoch 9 - iter 60/304 - loss 0.24345455 - time (sec): 0.94 - samples/sec: 6481.83 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:00:21,342 epoch 9 - iter 90/304 - loss 0.25235638 - time (sec): 1.41 - samples/sec: 6575.74 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:00:21,791 epoch 9 - iter 120/304 - loss 0.23860452 - time (sec): 1.86 - samples/sec: 6701.57 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:00:22,252 epoch 9 - iter 150/304 - loss 0.23208699 - time (sec): 2.32 - samples/sec: 6708.59 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:00:22,695 epoch 9 - iter 180/304 - loss 0.23166946 - time (sec): 2.76 - samples/sec: 6639.55 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:00:23,155 epoch 9 - iter 210/304 - loss 0.23227634 - time (sec): 3.22 - samples/sec: 6721.93 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:00:23,602 epoch 9 - iter 240/304 - loss 0.23524665 - time (sec): 3.67 - samples/sec: 6681.01 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:00:24,048 epoch 9 - iter 270/304 - loss 0.23400306 - time (sec): 4.11 - samples/sec: 6646.96 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:00:24,505 epoch 9 - iter 300/304 - loss 0.23000825 - time (sec): 4.57 - samples/sec: 6696.02 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:00:24,561 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:24,561 EPOCH 9 done: loss 0.2303 - lr: 0.000006
2023-10-18 16:00:25,084 DEV : loss 0.2380855232477188 - f1-score (micro avg)  0.5534
2023-10-18 16:00:25,090 saving best model
2023-10-18 16:00:25,123 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:25,583 epoch 10 - iter 30/304 - loss 0.19168195 - time (sec): 0.46 - samples/sec: 6711.13 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:00:26,055 epoch 10 - iter 60/304 - loss 0.17965363 - time (sec): 0.93 - samples/sec: 6704.56 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:00:26,495 epoch 10 - iter 90/304 - loss 0.20505631 - time (sec): 1.37 - samples/sec: 6766.85 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:00:26,934 epoch 10 - iter 120/304 - loss 0.20380845 - time (sec): 1.81 - samples/sec: 6660.94 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:00:27,377 epoch 10 - iter 150/304 - loss 0.20047948 - time (sec): 2.25 - samples/sec: 6623.80 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:00:27,828 epoch 10 - iter 180/304 - loss 0.21028851 - time (sec): 2.70 - samples/sec: 6690.30 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:00:28,295 epoch 10 - iter 210/304 - loss 0.21399489 - time (sec): 3.17 - samples/sec: 6675.00 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:00:28,759 epoch 10 - iter 240/304 - loss 0.22201720 - time (sec): 3.64 - samples/sec: 6667.29 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:00:29,232 epoch 10 - iter 270/304 - loss 0.22425873 - time (sec): 4.11 - samples/sec: 6634.53 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:00:29,693 epoch 10 - iter 300/304 - loss 0.22507873 - time (sec): 4.57 - samples/sec: 6694.32 - lr: 0.000000 - momentum: 0.000000
2023-10-18 16:00:29,753 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:29,753 EPOCH 10 done: loss 0.2235 - lr: 0.000000
2023-10-18 16:00:30,275 DEV : loss 0.23677615821361542 - f1-score (micro avg)  0.5579
2023-10-18 16:00:30,281 saving best model
2023-10-18 16:00:30,340 ----------------------------------------------------------------------------------------------------
2023-10-18 16:00:30,340 Loading model from best epoch ...
2023-10-18 16:00:30,417 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-18 16:00:30,907 
Results:
- F-score (micro) 0.5992
- F-score (macro) 0.3691
- Accuracy 0.4524

By class:
              precision    recall  f1-score   support

       scope     0.5082    0.6159    0.5569       151
        work     0.5175    0.7789    0.6218        95
        pers     0.7011    0.6354    0.6667        96
         loc     0.0000    0.0000    0.0000         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.5521    0.6552    0.5992       348
   macro avg     0.3454    0.4061    0.3691       348
weighted avg     0.5552    0.6552    0.5953       348

2023-10-18 16:00:30,907 ----------------------------------------------------------------------------------------------------