--- license: mit language: - en - de - fr - fi - sv - nl --- # hmByT5 - Preliminary Language Models Preliminary Historic Multilingual and Monolingual ByT5 Models. Following languages are currently covered: * English (British Library Corpus - Books) * German (Europeana Newspaper) * French (Europeana Newspaper) * Finnish (Europeana Newspaper) * Swedish (Europeana Newspaper) * Dutch (Delpher Corpus) More details can be found in [our GitHub repository](https://github.com/stefan-it/hmByT5). In this experiment we sample 4B bytes (~4GB of text) from each corpora (and upsample Swedish and Finnish) and train for another epoch (2 epochs in total). # Pretraining We use the official JAX/FLAX example in Hugging Face Transformers to pretrain a ByT5 model on a single v3-8 TPU. Details about the training can be found [here](https://github.com/stefan-it/hmByT5/tree/main/hmbyt5-flax). # Evaluation on Downstream Tasks (NER) We evaluated the hmByT5 model on downstream tasks: | Model | English AjMC | German AjMC | French AjMC | Finnish NewsEye | Swedish NewsEye | Dutch ICDAR | French ICDAR | Avg. | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|-----------------|-----------------|--------------|--------------|------| | [`hmbyt5-preliminary/byt5-small-multilingual-4g-2e`](https://huggingface.co/hmbyt5-preliminary/byt5-small-multilingual-4g-2e) | 83.86 ± 0.61 | 87.54 ± 0.19 | 84.29 ± 0.41 | | | | | | # Acknowledgements Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️