Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697244053.6d4c7681f95b.3224.14 +3 -0
- test.tsv +0 -0
- training.log +263 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dc2205772d22e94b45de58ec73859fd5e55abe87e14ea838606c265fc4bbc31
|
3 |
+
size 870793839
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d10056dc010f0bba4d29f82454c39a50606bfb6a7f514cdc76651e4e522a943
|
3 |
+
size 870793956
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 00:48:28 0.0001 0.9011 0.0813 0.5217 0.6582 0.5821 0.4262
|
3 |
+
2 00:56:01 0.0001 0.0918 0.0590 0.7132 0.7975 0.7530 0.6364
|
4 |
+
3 01:03:38 0.0001 0.0535 0.0566 0.7698 0.8608 0.8127 0.6962
|
5 |
+
4 01:11:14 0.0001 0.0326 0.0654 0.8080 0.8523 0.8296 0.7214
|
6 |
+
5 01:18:53 0.0001 0.0210 0.0730 0.7812 0.8439 0.8114 0.7042
|
7 |
+
6 01:26:29 0.0001 0.0143 0.0767 0.7857 0.8819 0.8310 0.7207
|
8 |
+
7 01:34:01 0.0001 0.0096 0.0880 0.8023 0.8734 0.8364 0.7340
|
9 |
+
8 01:41:54 0.0000 0.0059 0.0929 0.7909 0.8776 0.8320 0.7273
|
10 |
+
9 01:49:20 0.0000 0.0045 0.1013 0.7969 0.8608 0.8276 0.7208
|
11 |
+
10 01:56:55 0.0000 0.0025 0.1049 0.7938 0.8608 0.8259 0.7234
|
runs/events.out.tfevents.1697244053.6d4c7681f95b.3224.14
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34a30e3ce5f15d9264ab0f80d9217d12e60115ff031fcaa8e9cb542c5c84d45c
|
3 |
+
size 864636
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-14 00:40:53,759 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-14 00:40:53,762 Model: "SequenceTagger(
|
3 |
+
(embeddings): ByT5Embeddings(
|
4 |
+
(model): T5EncoderModel(
|
5 |
+
(shared): Embedding(384, 1472)
|
6 |
+
(encoder): T5Stack(
|
7 |
+
(embed_tokens): Embedding(384, 1472)
|
8 |
+
(block): ModuleList(
|
9 |
+
(0): T5Block(
|
10 |
+
(layer): ModuleList(
|
11 |
+
(0): T5LayerSelfAttention(
|
12 |
+
(SelfAttention): T5Attention(
|
13 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
14 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
15 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
16 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
17 |
+
(relative_attention_bias): Embedding(32, 6)
|
18 |
+
)
|
19 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(1): T5LayerFF(
|
23 |
+
(DenseReluDense): T5DenseGatedActDense(
|
24 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
25 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
26 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
27 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
28 |
+
(act): NewGELUActivation()
|
29 |
+
)
|
30 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
31 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(1-11): 11 x T5Block(
|
36 |
+
(layer): ModuleList(
|
37 |
+
(0): T5LayerSelfAttention(
|
38 |
+
(SelfAttention): T5Attention(
|
39 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
40 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
41 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
42 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
43 |
+
)
|
44 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
)
|
47 |
+
(1): T5LayerFF(
|
48 |
+
(DenseReluDense): T5DenseGatedActDense(
|
49 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
50 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
51 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
52 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
53 |
+
(act): NewGELUActivation()
|
54 |
+
)
|
55 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
56 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
62 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(locked_dropout): LockedDropout(p=0.5)
|
67 |
+
(linear): Linear(in_features=1472, out_features=13, bias=True)
|
68 |
+
(loss_function): CrossEntropyLoss()
|
69 |
+
)"
|
70 |
+
2023-10-14 00:40:53,762 ----------------------------------------------------------------------------------------------------
|
71 |
+
2023-10-14 00:40:53,762 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
|
72 |
+
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
|
73 |
+
2023-10-14 00:40:53,762 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-14 00:40:53,763 Train: 6183 sentences
|
75 |
+
2023-10-14 00:40:53,763 (train_with_dev=False, train_with_test=False)
|
76 |
+
2023-10-14 00:40:53,763 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-14 00:40:53,763 Training Params:
|
78 |
+
2023-10-14 00:40:53,763 - learning_rate: "0.00015"
|
79 |
+
2023-10-14 00:40:53,763 - mini_batch_size: "4"
|
80 |
+
2023-10-14 00:40:53,763 - max_epochs: "10"
|
81 |
+
2023-10-14 00:40:53,763 - shuffle: "True"
|
82 |
+
2023-10-14 00:40:53,763 ----------------------------------------------------------------------------------------------------
|
83 |
+
2023-10-14 00:40:53,763 Plugins:
|
84 |
+
2023-10-14 00:40:53,763 - TensorboardLogger
|
85 |
+
2023-10-14 00:40:53,763 - LinearScheduler | warmup_fraction: '0.1'
|
86 |
+
2023-10-14 00:40:53,763 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-14 00:40:53,764 Final evaluation on model from best epoch (best-model.pt)
|
88 |
+
2023-10-14 00:40:53,764 - metric: "('micro avg', 'f1-score')"
|
89 |
+
2023-10-14 00:40:53,764 ----------------------------------------------------------------------------------------------------
|
90 |
+
2023-10-14 00:40:53,764 Computation:
|
91 |
+
2023-10-14 00:40:53,764 - compute on device: cuda:0
|
92 |
+
2023-10-14 00:40:53,764 - embedding storage: none
|
93 |
+
2023-10-14 00:40:53,764 ----------------------------------------------------------------------------------------------------
|
94 |
+
2023-10-14 00:40:53,764 Model training base path: "hmbench-topres19th/en-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4"
|
95 |
+
2023-10-14 00:40:53,764 ----------------------------------------------------------------------------------------------------
|
96 |
+
2023-10-14 00:40:53,764 ----------------------------------------------------------------------------------------------------
|
97 |
+
2023-10-14 00:40:53,764 Logging anything other than scalars to TensorBoard is currently not supported.
|
98 |
+
2023-10-14 00:41:37,315 epoch 1 - iter 154/1546 - loss 2.56873151 - time (sec): 43.55 - samples/sec: 288.51 - lr: 0.000015 - momentum: 0.000000
|
99 |
+
2023-10-14 00:42:21,594 epoch 1 - iter 308/1546 - loss 2.43379623 - time (sec): 87.83 - samples/sec: 291.12 - lr: 0.000030 - momentum: 0.000000
|
100 |
+
2023-10-14 00:43:04,591 epoch 1 - iter 462/1546 - loss 2.16358210 - time (sec): 130.82 - samples/sec: 293.17 - lr: 0.000045 - momentum: 0.000000
|
101 |
+
2023-10-14 00:43:47,729 epoch 1 - iter 616/1546 - loss 1.89703690 - time (sec): 173.96 - samples/sec: 286.04 - lr: 0.000060 - momentum: 0.000000
|
102 |
+
2023-10-14 00:44:31,467 epoch 1 - iter 770/1546 - loss 1.61404026 - time (sec): 217.70 - samples/sec: 285.41 - lr: 0.000075 - momentum: 0.000000
|
103 |
+
2023-10-14 00:45:15,241 epoch 1 - iter 924/1546 - loss 1.39110007 - time (sec): 261.47 - samples/sec: 282.67 - lr: 0.000090 - momentum: 0.000000
|
104 |
+
2023-10-14 00:45:59,472 epoch 1 - iter 1078/1546 - loss 1.22539657 - time (sec): 305.71 - samples/sec: 282.34 - lr: 0.000104 - momentum: 0.000000
|
105 |
+
2023-10-14 00:46:43,473 epoch 1 - iter 1232/1546 - loss 1.09447369 - time (sec): 349.71 - samples/sec: 282.98 - lr: 0.000119 - momentum: 0.000000
|
106 |
+
2023-10-14 00:47:26,775 epoch 1 - iter 1386/1546 - loss 0.98722789 - time (sec): 393.01 - samples/sec: 284.48 - lr: 0.000134 - momentum: 0.000000
|
107 |
+
2023-10-14 00:48:09,530 epoch 1 - iter 1540/1546 - loss 0.90394722 - time (sec): 435.76 - samples/sec: 284.17 - lr: 0.000149 - momentum: 0.000000
|
108 |
+
2023-10-14 00:48:11,100 ----------------------------------------------------------------------------------------------------
|
109 |
+
2023-10-14 00:48:11,100 EPOCH 1 done: loss 0.9011 - lr: 0.000149
|
110 |
+
2023-10-14 00:48:28,371 DEV : loss 0.0812714695930481 - f1-score (micro avg) 0.5821
|
111 |
+
2023-10-14 00:48:28,400 saving best model
|
112 |
+
2023-10-14 00:48:29,339 ----------------------------------------------------------------------------------------------------
|
113 |
+
2023-10-14 00:49:11,816 epoch 2 - iter 154/1546 - loss 0.10318258 - time (sec): 42.47 - samples/sec: 258.58 - lr: 0.000148 - momentum: 0.000000
|
114 |
+
2023-10-14 00:49:55,140 epoch 2 - iter 308/1546 - loss 0.10981228 - time (sec): 85.80 - samples/sec: 280.28 - lr: 0.000147 - momentum: 0.000000
|
115 |
+
2023-10-14 00:50:38,438 epoch 2 - iter 462/1546 - loss 0.10677416 - time (sec): 129.10 - samples/sec: 279.42 - lr: 0.000145 - momentum: 0.000000
|
116 |
+
2023-10-14 00:51:21,839 epoch 2 - iter 616/1546 - loss 0.10494738 - time (sec): 172.50 - samples/sec: 283.09 - lr: 0.000143 - momentum: 0.000000
|
117 |
+
2023-10-14 00:52:05,915 epoch 2 - iter 770/1546 - loss 0.10120027 - time (sec): 216.57 - samples/sec: 285.19 - lr: 0.000142 - momentum: 0.000000
|
118 |
+
2023-10-14 00:52:49,780 epoch 2 - iter 924/1546 - loss 0.09745622 - time (sec): 260.44 - samples/sec: 287.52 - lr: 0.000140 - momentum: 0.000000
|
119 |
+
2023-10-14 00:53:33,706 epoch 2 - iter 1078/1546 - loss 0.09614656 - time (sec): 304.36 - samples/sec: 285.46 - lr: 0.000138 - momentum: 0.000000
|
120 |
+
2023-10-14 00:54:16,839 epoch 2 - iter 1232/1546 - loss 0.09374842 - time (sec): 347.50 - samples/sec: 285.24 - lr: 0.000137 - momentum: 0.000000
|
121 |
+
2023-10-14 00:54:59,232 epoch 2 - iter 1386/1546 - loss 0.09264200 - time (sec): 389.89 - samples/sec: 284.46 - lr: 0.000135 - momentum: 0.000000
|
122 |
+
2023-10-14 00:55:42,457 epoch 2 - iter 1540/1546 - loss 0.09188658 - time (sec): 433.12 - samples/sec: 285.66 - lr: 0.000133 - momentum: 0.000000
|
123 |
+
2023-10-14 00:55:44,125 ----------------------------------------------------------------------------------------------------
|
124 |
+
2023-10-14 00:55:44,125 EPOCH 2 done: loss 0.0918 - lr: 0.000133
|
125 |
+
2023-10-14 00:56:01,105 DEV : loss 0.05896108224987984 - f1-score (micro avg) 0.753
|
126 |
+
2023-10-14 00:56:01,138 saving best model
|
127 |
+
2023-10-14 00:56:02,107 ----------------------------------------------------------------------------------------------------
|
128 |
+
2023-10-14 00:56:45,802 epoch 3 - iter 154/1546 - loss 0.03817025 - time (sec): 43.69 - samples/sec: 290.81 - lr: 0.000132 - momentum: 0.000000
|
129 |
+
2023-10-14 00:57:30,409 epoch 3 - iter 308/1546 - loss 0.04755001 - time (sec): 88.30 - samples/sec: 285.37 - lr: 0.000130 - momentum: 0.000000
|
130 |
+
2023-10-14 00:58:14,419 epoch 3 - iter 462/1546 - loss 0.05104447 - time (sec): 132.31 - samples/sec: 287.17 - lr: 0.000128 - momentum: 0.000000
|
131 |
+
2023-10-14 00:58:59,278 epoch 3 - iter 616/1546 - loss 0.05222974 - time (sec): 177.17 - samples/sec: 284.35 - lr: 0.000127 - momentum: 0.000000
|
132 |
+
2023-10-14 00:59:42,378 epoch 3 - iter 770/1546 - loss 0.05664685 - time (sec): 220.27 - samples/sec: 283.57 - lr: 0.000125 - momentum: 0.000000
|
133 |
+
2023-10-14 01:00:26,466 epoch 3 - iter 924/1546 - loss 0.05615839 - time (sec): 264.36 - samples/sec: 283.26 - lr: 0.000123 - momentum: 0.000000
|
134 |
+
2023-10-14 01:01:10,213 epoch 3 - iter 1078/1546 - loss 0.05563682 - time (sec): 308.10 - samples/sec: 283.56 - lr: 0.000122 - momentum: 0.000000
|
135 |
+
2023-10-14 01:01:53,935 epoch 3 - iter 1232/1546 - loss 0.05496907 - time (sec): 351.83 - samples/sec: 283.05 - lr: 0.000120 - momentum: 0.000000
|
136 |
+
2023-10-14 01:02:36,567 epoch 3 - iter 1386/1546 - loss 0.05420399 - time (sec): 394.46 - samples/sec: 282.68 - lr: 0.000118 - momentum: 0.000000
|
137 |
+
2023-10-14 01:03:19,488 epoch 3 - iter 1540/1546 - loss 0.05358357 - time (sec): 437.38 - samples/sec: 283.24 - lr: 0.000117 - momentum: 0.000000
|
138 |
+
2023-10-14 01:03:21,125 ----------------------------------------------------------------------------------------------------
|
139 |
+
2023-10-14 01:03:21,126 EPOCH 3 done: loss 0.0535 - lr: 0.000117
|
140 |
+
2023-10-14 01:03:38,668 DEV : loss 0.05659706890583038 - f1-score (micro avg) 0.8127
|
141 |
+
2023-10-14 01:03:38,696 saving best model
|
142 |
+
2023-10-14 01:03:39,676 ----------------------------------------------------------------------------------------------------
|
143 |
+
2023-10-14 01:04:22,928 epoch 4 - iter 154/1546 - loss 0.02880123 - time (sec): 43.25 - samples/sec: 282.77 - lr: 0.000115 - momentum: 0.000000
|
144 |
+
2023-10-14 01:05:05,591 epoch 4 - iter 308/1546 - loss 0.03320371 - time (sec): 85.91 - samples/sec: 281.37 - lr: 0.000113 - momentum: 0.000000
|
145 |
+
2023-10-14 01:05:47,828 epoch 4 - iter 462/1546 - loss 0.03355342 - time (sec): 128.15 - samples/sec: 277.43 - lr: 0.000112 - momentum: 0.000000
|
146 |
+
2023-10-14 01:06:32,557 epoch 4 - iter 616/1546 - loss 0.03292566 - time (sec): 172.88 - samples/sec: 281.16 - lr: 0.000110 - momentum: 0.000000
|
147 |
+
2023-10-14 01:07:16,430 epoch 4 - iter 770/1546 - loss 0.03538356 - time (sec): 216.75 - samples/sec: 283.12 - lr: 0.000108 - momentum: 0.000000
|
148 |
+
2023-10-14 01:08:00,152 epoch 4 - iter 924/1546 - loss 0.03499173 - time (sec): 260.47 - samples/sec: 282.29 - lr: 0.000107 - momentum: 0.000000
|
149 |
+
2023-10-14 01:08:43,630 epoch 4 - iter 1078/1546 - loss 0.03358414 - time (sec): 303.95 - samples/sec: 282.46 - lr: 0.000105 - momentum: 0.000000
|
150 |
+
2023-10-14 01:09:26,021 epoch 4 - iter 1232/1546 - loss 0.03409530 - time (sec): 346.34 - samples/sec: 282.45 - lr: 0.000103 - momentum: 0.000000
|
151 |
+
2023-10-14 01:10:10,598 epoch 4 - iter 1386/1546 - loss 0.03269230 - time (sec): 390.92 - samples/sec: 284.77 - lr: 0.000102 - momentum: 0.000000
|
152 |
+
2023-10-14 01:10:54,547 epoch 4 - iter 1540/1546 - loss 0.03249523 - time (sec): 434.87 - samples/sec: 284.58 - lr: 0.000100 - momentum: 0.000000
|
153 |
+
2023-10-14 01:10:56,205 ----------------------------------------------------------------------------------------------------
|
154 |
+
2023-10-14 01:10:56,206 EPOCH 4 done: loss 0.0326 - lr: 0.000100
|
155 |
+
2023-10-14 01:11:14,223 DEV : loss 0.06543166935443878 - f1-score (micro avg) 0.8296
|
156 |
+
2023-10-14 01:11:14,257 saving best model
|
157 |
+
2023-10-14 01:11:16,978 ----------------------------------------------------------------------------------------------------
|
158 |
+
2023-10-14 01:12:01,955 epoch 5 - iter 154/1546 - loss 0.02269561 - time (sec): 44.97 - samples/sec: 277.46 - lr: 0.000098 - momentum: 0.000000
|
159 |
+
2023-10-14 01:12:45,258 epoch 5 - iter 308/1546 - loss 0.01877881 - time (sec): 88.28 - samples/sec: 282.06 - lr: 0.000097 - momentum: 0.000000
|
160 |
+
2023-10-14 01:13:28,365 epoch 5 - iter 462/1546 - loss 0.01896534 - time (sec): 131.38 - samples/sec: 284.70 - lr: 0.000095 - momentum: 0.000000
|
161 |
+
2023-10-14 01:14:12,356 epoch 5 - iter 616/1546 - loss 0.01903863 - time (sec): 175.37 - samples/sec: 282.49 - lr: 0.000093 - momentum: 0.000000
|
162 |
+
2023-10-14 01:14:55,863 epoch 5 - iter 770/1546 - loss 0.01875930 - time (sec): 218.88 - samples/sec: 285.22 - lr: 0.000092 - momentum: 0.000000
|
163 |
+
2023-10-14 01:15:39,889 epoch 5 - iter 924/1546 - loss 0.01806369 - time (sec): 262.91 - samples/sec: 285.58 - lr: 0.000090 - momentum: 0.000000
|
164 |
+
2023-10-14 01:16:24,044 epoch 5 - iter 1078/1546 - loss 0.01918173 - time (sec): 307.06 - samples/sec: 285.19 - lr: 0.000088 - momentum: 0.000000
|
165 |
+
2023-10-14 01:17:07,380 epoch 5 - iter 1232/1546 - loss 0.01910152 - time (sec): 350.40 - samples/sec: 282.90 - lr: 0.000087 - momentum: 0.000000
|
166 |
+
2023-10-14 01:17:50,259 epoch 5 - iter 1386/1546 - loss 0.02046787 - time (sec): 393.28 - samples/sec: 283.93 - lr: 0.000085 - momentum: 0.000000
|
167 |
+
2023-10-14 01:18:34,363 epoch 5 - iter 1540/1546 - loss 0.02101615 - time (sec): 437.38 - samples/sec: 282.89 - lr: 0.000083 - momentum: 0.000000
|
168 |
+
2023-10-14 01:18:36,049 ----------------------------------------------------------------------------------------------------
|
169 |
+
2023-10-14 01:18:36,049 EPOCH 5 done: loss 0.0210 - lr: 0.000083
|
170 |
+
2023-10-14 01:18:53,025 DEV : loss 0.07295508682727814 - f1-score (micro avg) 0.8114
|
171 |
+
2023-10-14 01:18:53,055 ----------------------------------------------------------------------------------------------------
|
172 |
+
2023-10-14 01:19:37,032 epoch 6 - iter 154/1546 - loss 0.01805609 - time (sec): 43.98 - samples/sec: 280.23 - lr: 0.000082 - momentum: 0.000000
|
173 |
+
2023-10-14 01:20:20,915 epoch 6 - iter 308/1546 - loss 0.01358401 - time (sec): 87.86 - samples/sec: 282.61 - lr: 0.000080 - momentum: 0.000000
|
174 |
+
2023-10-14 01:21:04,910 epoch 6 - iter 462/1546 - loss 0.01234981 - time (sec): 131.85 - samples/sec: 286.36 - lr: 0.000078 - momentum: 0.000000
|
175 |
+
2023-10-14 01:21:48,433 epoch 6 - iter 616/1546 - loss 0.01241203 - time (sec): 175.38 - samples/sec: 286.78 - lr: 0.000077 - momentum: 0.000000
|
176 |
+
2023-10-14 01:22:31,732 epoch 6 - iter 770/1546 - loss 0.01401568 - time (sec): 218.67 - samples/sec: 283.93 - lr: 0.000075 - momentum: 0.000000
|
177 |
+
2023-10-14 01:23:15,331 epoch 6 - iter 924/1546 - loss 0.01424007 - time (sec): 262.27 - samples/sec: 282.40 - lr: 0.000073 - momentum: 0.000000
|
178 |
+
2023-10-14 01:23:59,294 epoch 6 - iter 1078/1546 - loss 0.01451504 - time (sec): 306.24 - samples/sec: 282.27 - lr: 0.000072 - momentum: 0.000000
|
179 |
+
2023-10-14 01:24:42,465 epoch 6 - iter 1232/1546 - loss 0.01474960 - time (sec): 349.41 - samples/sec: 281.30 - lr: 0.000070 - momentum: 0.000000
|
180 |
+
2023-10-14 01:25:25,815 epoch 6 - iter 1386/1546 - loss 0.01493525 - time (sec): 392.76 - samples/sec: 281.51 - lr: 0.000068 - momentum: 0.000000
|
181 |
+
2023-10-14 01:26:09,605 epoch 6 - iter 1540/1546 - loss 0.01413867 - time (sec): 436.55 - samples/sec: 283.39 - lr: 0.000067 - momentum: 0.000000
|
182 |
+
2023-10-14 01:26:11,277 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-14 01:26:11,277 EPOCH 6 done: loss 0.0143 - lr: 0.000067
|
184 |
+
2023-10-14 01:26:29,293 DEV : loss 0.07670143991708755 - f1-score (micro avg) 0.831
|
185 |
+
2023-10-14 01:26:29,335 saving best model
|
186 |
+
2023-10-14 01:26:31,945 ----------------------------------------------------------------------------------------------------
|
187 |
+
2023-10-14 01:27:18,143 epoch 7 - iter 154/1546 - loss 0.00975317 - time (sec): 46.19 - samples/sec: 297.57 - lr: 0.000065 - momentum: 0.000000
|
188 |
+
2023-10-14 01:28:00,843 epoch 7 - iter 308/1546 - loss 0.00891956 - time (sec): 88.89 - samples/sec: 292.11 - lr: 0.000063 - momentum: 0.000000
|
189 |
+
2023-10-14 01:28:44,318 epoch 7 - iter 462/1546 - loss 0.00997728 - time (sec): 132.37 - samples/sec: 290.55 - lr: 0.000062 - momentum: 0.000000
|
190 |
+
2023-10-14 01:29:26,892 epoch 7 - iter 616/1546 - loss 0.00930809 - time (sec): 174.94 - samples/sec: 290.48 - lr: 0.000060 - momentum: 0.000000
|
191 |
+
2023-10-14 01:30:09,203 epoch 7 - iter 770/1546 - loss 0.00916108 - time (sec): 217.25 - samples/sec: 287.44 - lr: 0.000058 - momentum: 0.000000
|
192 |
+
2023-10-14 01:30:51,937 epoch 7 - iter 924/1546 - loss 0.00924439 - time (sec): 259.99 - samples/sec: 290.46 - lr: 0.000057 - momentum: 0.000000
|
193 |
+
2023-10-14 01:31:33,959 epoch 7 - iter 1078/1546 - loss 0.01049403 - time (sec): 302.01 - samples/sec: 290.64 - lr: 0.000055 - momentum: 0.000000
|
194 |
+
2023-10-14 01:32:16,483 epoch 7 - iter 1232/1546 - loss 0.01043974 - time (sec): 344.53 - samples/sec: 288.74 - lr: 0.000053 - momentum: 0.000000
|
195 |
+
2023-10-14 01:32:59,452 epoch 7 - iter 1386/1546 - loss 0.00997770 - time (sec): 387.50 - samples/sec: 287.00 - lr: 0.000052 - momentum: 0.000000
|
196 |
+
2023-10-14 01:33:42,672 epoch 7 - iter 1540/1546 - loss 0.00960048 - time (sec): 430.72 - samples/sec: 287.24 - lr: 0.000050 - momentum: 0.000000
|
197 |
+
2023-10-14 01:33:44,315 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-14 01:33:44,316 EPOCH 7 done: loss 0.0096 - lr: 0.000050
|
199 |
+
2023-10-14 01:34:01,530 DEV : loss 0.0880291685461998 - f1-score (micro avg) 0.8364
|
200 |
+
2023-10-14 01:34:01,560 saving best model
|
201 |
+
2023-10-14 01:34:04,174 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-14 01:34:47,366 epoch 8 - iter 154/1546 - loss 0.00390031 - time (sec): 43.19 - samples/sec: 293.43 - lr: 0.000048 - momentum: 0.000000
|
203 |
+
2023-10-14 01:35:29,570 epoch 8 - iter 308/1546 - loss 0.00354778 - time (sec): 85.39 - samples/sec: 283.34 - lr: 0.000047 - momentum: 0.000000
|
204 |
+
2023-10-14 01:36:12,267 epoch 8 - iter 462/1546 - loss 0.00558009 - time (sec): 128.09 - samples/sec: 285.33 - lr: 0.000045 - momentum: 0.000000
|
205 |
+
2023-10-14 01:36:56,668 epoch 8 - iter 616/1546 - loss 0.00613750 - time (sec): 172.49 - samples/sec: 280.88 - lr: 0.000043 - momentum: 0.000000
|
206 |
+
2023-10-14 01:37:43,215 epoch 8 - iter 770/1546 - loss 0.00600191 - time (sec): 219.04 - samples/sec: 278.43 - lr: 0.000042 - momentum: 0.000000
|
207 |
+
2023-10-14 01:38:29,251 epoch 8 - iter 924/1546 - loss 0.00583790 - time (sec): 265.07 - samples/sec: 277.56 - lr: 0.000040 - momentum: 0.000000
|
208 |
+
2023-10-14 01:39:14,114 epoch 8 - iter 1078/1546 - loss 0.00603055 - time (sec): 309.94 - samples/sec: 274.06 - lr: 0.000038 - momentum: 0.000000
|
209 |
+
2023-10-14 01:40:01,383 epoch 8 - iter 1232/1546 - loss 0.00653849 - time (sec): 357.21 - samples/sec: 274.08 - lr: 0.000037 - momentum: 0.000000
|
210 |
+
2023-10-14 01:40:49,090 epoch 8 - iter 1386/1546 - loss 0.00610073 - time (sec): 404.91 - samples/sec: 274.75 - lr: 0.000035 - momentum: 0.000000
|
211 |
+
2023-10-14 01:41:35,518 epoch 8 - iter 1540/1546 - loss 0.00595387 - time (sec): 451.34 - samples/sec: 274.45 - lr: 0.000033 - momentum: 0.000000
|
212 |
+
2023-10-14 01:41:37,155 ----------------------------------------------------------------------------------------------------
|
213 |
+
2023-10-14 01:41:37,155 EPOCH 8 done: loss 0.0059 - lr: 0.000033
|
214 |
+
2023-10-14 01:41:54,940 DEV : loss 0.09291724860668182 - f1-score (micro avg) 0.832
|
215 |
+
2023-10-14 01:41:54,969 ----------------------------------------------------------------------------------------------------
|
216 |
+
2023-10-14 01:42:39,414 epoch 9 - iter 154/1546 - loss 0.00195984 - time (sec): 44.44 - samples/sec: 283.42 - lr: 0.000032 - momentum: 0.000000
|
217 |
+
2023-10-14 01:43:23,371 epoch 9 - iter 308/1546 - loss 0.00226573 - time (sec): 88.40 - samples/sec: 280.80 - lr: 0.000030 - momentum: 0.000000
|
218 |
+
2023-10-14 01:44:07,873 epoch 9 - iter 462/1546 - loss 0.00286662 - time (sec): 132.90 - samples/sec: 284.35 - lr: 0.000028 - momentum: 0.000000
|
219 |
+
2023-10-14 01:44:52,315 epoch 9 - iter 616/1546 - loss 0.00407165 - time (sec): 177.34 - samples/sec: 284.00 - lr: 0.000027 - momentum: 0.000000
|
220 |
+
2023-10-14 01:45:35,291 epoch 9 - iter 770/1546 - loss 0.00463367 - time (sec): 220.32 - samples/sec: 282.55 - lr: 0.000025 - momentum: 0.000000
|
221 |
+
2023-10-14 01:46:18,120 epoch 9 - iter 924/1546 - loss 0.00464126 - time (sec): 263.15 - samples/sec: 283.13 - lr: 0.000023 - momentum: 0.000000
|
222 |
+
2023-10-14 01:46:58,607 epoch 9 - iter 1078/1546 - loss 0.00453876 - time (sec): 303.64 - samples/sec: 288.14 - lr: 0.000022 - momentum: 0.000000
|
223 |
+
2023-10-14 01:47:38,679 epoch 9 - iter 1232/1546 - loss 0.00471355 - time (sec): 343.71 - samples/sec: 290.15 - lr: 0.000020 - momentum: 0.000000
|
224 |
+
2023-10-14 01:48:19,657 epoch 9 - iter 1386/1546 - loss 0.00446859 - time (sec): 384.69 - samples/sec: 292.58 - lr: 0.000018 - momentum: 0.000000
|
225 |
+
2023-10-14 01:49:01,929 epoch 9 - iter 1540/1546 - loss 0.00448726 - time (sec): 426.96 - samples/sec: 289.78 - lr: 0.000017 - momentum: 0.000000
|
226 |
+
2023-10-14 01:49:03,704 ----------------------------------------------------------------------------------------------------
|
227 |
+
2023-10-14 01:49:03,705 EPOCH 9 done: loss 0.0045 - lr: 0.000017
|
228 |
+
2023-10-14 01:49:20,835 DEV : loss 0.10131476074457169 - f1-score (micro avg) 0.8276
|
229 |
+
2023-10-14 01:49:20,865 ----------------------------------------------------------------------------------------------------
|
230 |
+
2023-10-14 01:50:04,766 epoch 10 - iter 154/1546 - loss 0.00119822 - time (sec): 43.90 - samples/sec: 288.50 - lr: 0.000015 - momentum: 0.000000
|
231 |
+
2023-10-14 01:50:47,340 epoch 10 - iter 308/1546 - loss 0.00178207 - time (sec): 86.47 - samples/sec: 277.32 - lr: 0.000013 - momentum: 0.000000
|
232 |
+
2023-10-14 01:51:30,796 epoch 10 - iter 462/1546 - loss 0.00153142 - time (sec): 129.93 - samples/sec: 283.13 - lr: 0.000012 - momentum: 0.000000
|
233 |
+
2023-10-14 01:52:14,216 epoch 10 - iter 616/1546 - loss 0.00162289 - time (sec): 173.35 - samples/sec: 286.02 - lr: 0.000010 - momentum: 0.000000
|
234 |
+
2023-10-14 01:52:57,272 epoch 10 - iter 770/1546 - loss 0.00187635 - time (sec): 216.40 - samples/sec: 285.41 - lr: 0.000008 - momentum: 0.000000
|
235 |
+
2023-10-14 01:53:41,326 epoch 10 - iter 924/1546 - loss 0.00182691 - time (sec): 260.46 - samples/sec: 284.76 - lr: 0.000007 - momentum: 0.000000
|
236 |
+
2023-10-14 01:54:24,005 epoch 10 - iter 1078/1546 - loss 0.00196491 - time (sec): 303.14 - samples/sec: 284.52 - lr: 0.000005 - momentum: 0.000000
|
237 |
+
2023-10-14 01:55:07,582 epoch 10 - iter 1232/1546 - loss 0.00209036 - time (sec): 346.71 - samples/sec: 285.53 - lr: 0.000003 - momentum: 0.000000
|
238 |
+
2023-10-14 01:55:51,488 epoch 10 - iter 1386/1546 - loss 0.00233145 - time (sec): 390.62 - samples/sec: 283.48 - lr: 0.000002 - momentum: 0.000000
|
239 |
+
2023-10-14 01:56:35,504 epoch 10 - iter 1540/1546 - loss 0.00253840 - time (sec): 434.64 - samples/sec: 284.86 - lr: 0.000000 - momentum: 0.000000
|
240 |
+
2023-10-14 01:56:37,127 ----------------------------------------------------------------------------------------------------
|
241 |
+
2023-10-14 01:56:37,127 EPOCH 10 done: loss 0.0025 - lr: 0.000000
|
242 |
+
2023-10-14 01:56:55,037 DEV : loss 0.10494109988212585 - f1-score (micro avg) 0.8259
|
243 |
+
2023-10-14 01:56:55,989 ----------------------------------------------------------------------------------------------------
|
244 |
+
2023-10-14 01:56:55,991 Loading model from best epoch ...
|
245 |
+
2023-10-14 01:57:00,432 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
|
246 |
+
2023-10-14 01:57:55,195
|
247 |
+
Results:
|
248 |
+
- F-score (micro) 0.7978
|
249 |
+
- F-score (macro) 0.713
|
250 |
+
- Accuracy 0.6828
|
251 |
+
|
252 |
+
By class:
|
253 |
+
precision recall f1-score support
|
254 |
+
|
255 |
+
LOC 0.8436 0.8552 0.8493 946
|
256 |
+
BUILDING 0.5588 0.5135 0.5352 185
|
257 |
+
STREET 0.7414 0.7679 0.7544 56
|
258 |
+
|
259 |
+
micro avg 0.7978 0.7978 0.7978 1187
|
260 |
+
macro avg 0.7146 0.7122 0.7130 1187
|
261 |
+
weighted avg 0.7944 0.7978 0.7959 1187
|
262 |
+
|
263 |
+
2023-10-14 01:57:55,195 ----------------------------------------------------------------------------------------------------
|