Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,30 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
---
|
5 |
+
language: en
|
6 |
+
license: apache-2.0
|
7 |
+
---
|
8 |
+
|
9 |
+
# My BERT Model
|
10 |
+
|
11 |
+
This is a BERT model fine-tuned for extracting embeddings from CVs and startup descriptions for matching purposes.
|
12 |
+
|
13 |
+
## Model Details
|
14 |
+
|
15 |
+
- **Architecture:** BERT-base-uncased
|
16 |
+
- **Use case:** CV and Startup matching
|
17 |
+
- **Training data:** Not applicable (pre-trained model used)
|
18 |
+
|
19 |
+
## How to use
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import BertTokenizer, BertModel
|
23 |
+
|
24 |
+
tokenizer = BertTokenizer.from_pretrained("your_username/your_model_name")
|
25 |
+
model = BertModel.from_pretrained("your_username/your_model_name")
|
26 |
+
|
27 |
+
text = "Sample text"
|
28 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
29 |
+
outputs = model(**inputs)
|
30 |
+
embedding = outputs.last_hidden_state.mean(dim=1).detach().numpy()
|