--- datasets: - homebrewltd/instruction-speech-whispervq-v2 language: - en license: apache-2.0 tags: - sound language model pipeline_tag: audio-text-to-text --- ## Model Details We have developed and released the family [llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input. We continual pretrain on the expanded vocabulary [homebrewltd/llama3.1-s-whispervq-init](https://huggingface.co/homebrewltd/llama3.1-s-whispervq-init) with 900M tokens from [homebrewltd/raw-speech-whispervq-v1](https://huggingface.co/datasets/homebrewltd/raw-speech-whispervq-v1) dataset. **Model developers** Homebrew Research. **Input** Text and sound. **Output** Text. **Model Architecture** Llama-3. **Language(s):** English. ## Intended Use **Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities. **Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited. ## Training process **Training Metrics Image**: Below is a snapshot of the training loss curve visualized. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/gtpDSs750SkMPJO0-UtFq.png) **MMLU**: | Model | MMLU Score | | --- | --- | | llama3.5-instruct-8b | 69.40 | | ichigo-llama3.1-s-v0.3: phase 3 | 63.79 | | ichigo-llama3.1-s-v0.3: phase 2 | 63.08 | | ichigo-llama3.1-s-base-v0.3 | **42.11** | | llama3.5-instruct-v0.2 | 50.27 | ### Hardware **GPU Configuration**: Cluster of 10x NVIDIA A6000-48GB. **GPU Usage**: - **Continual Training**: 30 hours. ### Training Arguments We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation. | Parameter | Continual Training | |----------------------------|-------------------------| | **Epoch** | 1 | | **Global batch size** | 480 | | **Learning Rate** | 2e-4 | | **Learning Scheduler** | Cosine with warmup | | **Optimizer** | AdamW fused | | **Warmup Steps** | 50 | | **Weight Decay** | 0.01 | | **Max Sequence Length** | 512 | ## Citation Information **BibTeX:** ``` @article{Llama3-S: Sound Instruction Language Model 2024, title={Llama3-S}, author={Homebrew Research}, year=2024, month=August}, url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-15} ``` ## Acknowledgement - **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)** - **[Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**