File size: 6,725 Bytes
7f594b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93ccee
7f594b6
 
c93ccee
7f594b6
 
c93ccee
7f594b6
 
c93ccee
7f594b6
 
 
 
 
 
 
 
 
c93ccee
 
 
 
 
7f594b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93ccee
7f594b6
 
 
 
 
 
c93ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f594b6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: mit
base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
tags:
- generated_from_trainer
datasets:
- sem_eval_2024_task_2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results2
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: sem_eval_2024_task_2
      type: sem_eval_2024_task_2
      config: sem_eval_2024_task_2_source
      split: validation
      args: sem_eval_2024_task_2_source
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.76
    - name: Precision
      type: precision
      value: 0.7601040416166467
    - name: Recall
      type: recall
      value: 0.76
    - name: F1
      type: f1
      value: 0.75997599759976
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results2

This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on the sem_eval_2024_task_2 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1827
- Accuracy: 0.76
- Precision: 0.7601
- Recall: 0.76
- F1: 0.7600

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.6925        | 1.0   | 107  | 0.6665          | 0.6      | 0.6457    | 0.6    | 0.5660 |
| 0.6729        | 2.0   | 214  | 0.6025          | 0.69     | 0.6964    | 0.69   | 0.6875 |
| 0.6857        | 3.0   | 321  | 0.6071          | 0.665    | 0.7531    | 0.665  | 0.6331 |
| 0.6667        | 4.0   | 428  | 0.5650          | 0.695    | 0.7157    | 0.6950 | 0.6875 |
| 0.6168        | 5.0   | 535  | 0.5036          | 0.75     | 0.7504    | 0.75   | 0.7499 |
| 0.5165        | 6.0   | 642  | 0.6248          | 0.67     | 0.6701    | 0.67   | 0.6700 |
| 0.4087        | 7.0   | 749  | 0.5246          | 0.735    | 0.7379    | 0.7350 | 0.7342 |
| 0.3083        | 8.0   | 856  | 0.6130          | 0.7      | 0.7       | 0.7    | 0.7    |
| 0.2909        | 9.0   | 963  | 0.7584          | 0.735    | 0.7723    | 0.7350 | 0.7256 |
| 0.319         | 10.0  | 1070 | 0.7350          | 0.72     | 0.7360    | 0.72   | 0.7152 |
| 0.1812        | 11.0  | 1177 | 0.9320          | 0.715    | 0.7176    | 0.7150 | 0.7141 |
| 0.2824        | 12.0  | 1284 | 0.9723          | 0.705    | 0.7336    | 0.7050 | 0.6957 |
| 0.2662        | 13.0  | 1391 | 0.8676          | 0.72     | 0.7222    | 0.72   | 0.7193 |
| 0.1641        | 14.0  | 1498 | 0.9450          | 0.71     | 0.7103    | 0.71   | 0.7099 |
| 0.2264        | 15.0  | 1605 | 1.1613          | 0.675    | 0.6764    | 0.675  | 0.6743 |
| 0.2077        | 16.0  | 1712 | 1.3497          | 0.715    | 0.7214    | 0.7150 | 0.7129 |
| 0.1767        | 17.0  | 1819 | 1.4154          | 0.705    | 0.7075    | 0.7050 | 0.7041 |
| 0.1751        | 18.0  | 1926 | 1.2369          | 0.735    | 0.7350    | 0.735  | 0.7350 |
| 0.1195        | 19.0  | 2033 | 1.1152          | 0.72     | 0.7334    | 0.72   | 0.7159 |
| 0.0507        | 20.0  | 2140 | 1.4853          | 0.715    | 0.7152    | 0.715  | 0.7149 |
| 0.0544        | 21.0  | 2247 | 1.7174          | 0.725    | 0.7302    | 0.7250 | 0.7234 |
| 0.0648        | 22.0  | 2354 | 1.7327          | 0.71     | 0.7121    | 0.71   | 0.7093 |
| 0.0039        | 23.0  | 2461 | 1.8211          | 0.725    | 0.7268    | 0.7250 | 0.7244 |
| 0.0153        | 24.0  | 2568 | 1.8315          | 0.715    | 0.7176    | 0.7150 | 0.7141 |
| 0.0017        | 25.0  | 2675 | 1.7446          | 0.72     | 0.7232    | 0.72   | 0.7190 |
| 0.0188        | 26.0  | 2782 | 1.6413          | 0.72     | 0.7274    | 0.72   | 0.7177 |
| 0.0168        | 27.0  | 2889 | 1.8013          | 0.73     | 0.7315    | 0.73   | 0.7296 |
| 0.0355        | 28.0  | 2996 | 2.0405          | 0.725    | 0.7354    | 0.725  | 0.7219 |
| 0.0168        | 29.0  | 3103 | 1.5087          | 0.735    | 0.7350    | 0.735  | 0.7350 |
| 0.0409        | 30.0  | 3210 | 1.5272          | 0.72     | 0.7244    | 0.72   | 0.7186 |
| 0.004         | 31.0  | 3317 | 1.9978          | 0.715    | 0.7214    | 0.7150 | 0.7129 |
| 0.0002        | 32.0  | 3424 | 1.9760          | 0.72     | 0.7244    | 0.72   | 0.7186 |
| 0.0111        | 33.0  | 3531 | 1.9985          | 0.74     | 0.7409    | 0.74   | 0.7398 |
| 0.052         | 34.0  | 3638 | 1.9607          | 0.73     | 0.7334    | 0.73   | 0.7290 |
| 0.0263        | 35.0  | 3745 | 1.7118          | 0.75     | 0.7525    | 0.75   | 0.7494 |
| 0.0101        | 36.0  | 3852 | 1.9553          | 0.755    | 0.7571    | 0.755  | 0.7545 |
| 0.0001        | 37.0  | 3959 | 2.0064          | 0.75     | 0.7537    | 0.75   | 0.7491 |
| 0.0186        | 38.0  | 4066 | 2.1726          | 0.74     | 0.7404    | 0.74   | 0.7399 |
| 0.0046        | 39.0  | 4173 | 2.1083          | 0.755    | 0.7550    | 0.755  | 0.7550 |
| 0.0042        | 40.0  | 4280 | 1.9944          | 0.76     | 0.7609    | 0.76   | 0.7598 |
| 0.0178        | 41.0  | 4387 | 2.0096          | 0.76     | 0.7604    | 0.76   | 0.7599 |
| 0.0089        | 42.0  | 4494 | 2.0431          | 0.765    | 0.7652    | 0.765  | 0.7649 |
| 0.0095        | 43.0  | 4601 | 2.0662          | 0.76     | 0.7604    | 0.76   | 0.7599 |
| 0.0162        | 44.0  | 4708 | 2.1703          | 0.745    | 0.7450    | 0.745  | 0.7450 |
| 0.0001        | 45.0  | 4815 | 2.1525          | 0.76     | 0.7601    | 0.76   | 0.7600 |
| 0.0001        | 46.0  | 4922 | 2.1581          | 0.76     | 0.7601    | 0.76   | 0.7600 |
| 0.0086        | 47.0  | 5029 | 2.1665          | 0.76     | 0.7601    | 0.76   | 0.7600 |
| 0.0088        | 48.0  | 5136 | 2.1747          | 0.76     | 0.7601    | 0.76   | 0.7600 |
| 0.0044        | 49.0  | 5243 | 2.1812          | 0.76     | 0.7601    | 0.76   | 0.7600 |
| 0.0043        | 50.0  | 5350 | 2.1827          | 0.76     | 0.7601    | 0.76   | 0.7600 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0