--- license: mit base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli tags: - generated_from_trainer datasets: - sem_eval_2024_task_2 metrics: - accuracy - precision - recall - f1 model-index: - name: results2 results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2024_task_2 type: sem_eval_2024_task_2 config: sem_eval_2024_task_2_source split: validation args: sem_eval_2024_task_2_source metrics: - name: Accuracy type: accuracy value: 0.71 - name: Precision type: precision value: 0.7228353140916808 - name: Recall type: recall value: 0.71 - name: F1 type: f1 value: 0.705762987012987 --- # results2 This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set: - Loss: 0.6038 - Accuracy: 0.71 - Precision: 0.7228 - Recall: 0.71 - F1: 0.7058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6794 | 1.0 | 107 | 0.6548 | 0.595 | 0.5978 | 0.595 | 0.5921 | | 0.6734 | 2.0 | 214 | 0.6038 | 0.71 | 0.7228 | 0.71 | 0.7058 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0