--- license: mit base_model: hongpingjun98/BioMedNLP_DeBERTa tags: - generated_from_trainer datasets: - sem_eval_2024_task_2 metrics: - accuracy - precision - recall - f1 model-index: - name: BioMedNLP_DeBERTa_all_updates results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2024_task_2 type: sem_eval_2024_task_2 config: sem_eval_2024_task_2_source split: validation args: sem_eval_2024_task_2_source metrics: - name: Accuracy type: accuracy value: 0.655 - name: Precision type: precision value: 0.6714791459232217 - name: Recall type: recall value: 0.655 - name: F1 type: f1 value: 0.6465073388150311 --- # BioMedNLP_DeBERTa_all_updates This model is a fine-tuned version of [hongpingjun98/BioMedNLP_DeBERTa](https://huggingface.co/hongpingjun98/BioMedNLP_DeBERTa) on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set: - Loss: 2.4673 - Accuracy: 0.655 - Precision: 0.6715 - Recall: 0.655 - F1: 0.6465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3757 | 1.0 | 115 | 0.6988 | 0.7 | 0.7020 | 0.7 | 0.6992 | | 0.3965 | 2.0 | 230 | 0.7320 | 0.695 | 0.7259 | 0.6950 | 0.6842 | | 0.3603 | 3.0 | 345 | 0.7736 | 0.7 | 0.7338 | 0.7 | 0.6888 | | 0.2721 | 4.0 | 460 | 0.8780 | 0.665 | 0.6802 | 0.665 | 0.6578 | | 0.4003 | 5.0 | 575 | 0.9046 | 0.655 | 0.6796 | 0.655 | 0.6428 | | 0.2773 | 6.0 | 690 | 0.9664 | 0.7 | 0.7053 | 0.7 | 0.6981 | | 0.2465 | 7.0 | 805 | 1.0035 | 0.67 | 0.6845 | 0.67 | 0.6634 | | 0.3437 | 8.0 | 920 | 1.0087 | 0.665 | 0.6780 | 0.665 | 0.6588 | | 0.1175 | 9.0 | 1035 | 1.2598 | 0.675 | 0.6780 | 0.675 | 0.6736 | | 0.155 | 10.0 | 1150 | 1.3976 | 0.69 | 0.7038 | 0.69 | 0.6847 | | 0.1013 | 11.0 | 1265 | 1.3761 | 0.67 | 0.6757 | 0.6700 | 0.6673 | | 0.1664 | 12.0 | 1380 | 1.5027 | 0.695 | 0.6950 | 0.695 | 0.6950 | | 0.0847 | 13.0 | 1495 | 1.8199 | 0.685 | 0.6973 | 0.685 | 0.68 | | 0.0856 | 14.0 | 1610 | 1.8299 | 0.66 | 0.6783 | 0.6600 | 0.6511 | | 0.1053 | 15.0 | 1725 | 2.0431 | 0.665 | 0.6852 | 0.665 | 0.6556 | | 0.0958 | 16.0 | 1840 | 1.9203 | 0.7 | 0.7040 | 0.7 | 0.6985 | | 0.0344 | 17.0 | 1955 | 2.1390 | 0.665 | 0.6780 | 0.665 | 0.6588 | | 0.014 | 18.0 | 2070 | 2.3609 | 0.655 | 0.6692 | 0.655 | 0.6476 | | 0.0085 | 19.0 | 2185 | 2.4310 | 0.65 | 0.6671 | 0.65 | 0.6408 | | 0.0285 | 20.0 | 2300 | 2.4673 | 0.655 | 0.6715 | 0.655 | 0.6465 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0