File size: 3,953 Bytes
6538961 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
- generated_from_trainer
datasets:
- sem_eval_2024_task_2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: run1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sem_eval_2024_task_2
type: sem_eval_2024_task_2
config: sem_eval_2024_task_2_source
split: validation
args: sem_eval_2024_task_2_source
metrics:
- name: Accuracy
type: accuracy
value: 0.64
- name: Precision
type: precision
value: 0.6582994120307553
- name: Recall
type: recall
value: 0.64
- name: F1
type: f1
value: 0.6292863762743282
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# run1
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the sem_eval_2024_task_2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2153
- Accuracy: 0.64
- Precision: 0.6583
- Recall: 0.64
- F1: 0.6293
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 0.99 | 53 | 0.6971 | 0.515 | 0.5272 | 0.515 | 0.4537 |
| 0.7029 | 2.0 | 107 | 0.6899 | 0.535 | 0.5413 | 0.535 | 0.5166 |
| 0.7029 | 2.99 | 160 | 0.6855 | 0.535 | 0.5399 | 0.5350 | 0.5203 |
| 0.6955 | 4.0 | 214 | 0.6698 | 0.565 | 0.5686 | 0.5650 | 0.5592 |
| 0.6955 | 4.99 | 267 | 0.6722 | 0.57 | 0.5703 | 0.5700 | 0.5696 |
| 0.6581 | 6.0 | 321 | 0.6367 | 0.61 | 0.6104 | 0.61 | 0.6096 |
| 0.6581 | 6.99 | 374 | 0.6973 | 0.58 | 0.5905 | 0.58 | 0.5675 |
| 0.5796 | 8.0 | 428 | 0.6925 | 0.625 | 0.6348 | 0.625 | 0.6180 |
| 0.5796 | 8.99 | 481 | 0.7539 | 0.61 | 0.6364 | 0.61 | 0.5902 |
| 0.4636 | 10.0 | 535 | 0.9313 | 0.575 | 0.6043 | 0.575 | 0.5429 |
| 0.4636 | 10.99 | 588 | 0.9028 | 0.615 | 0.6227 | 0.615 | 0.6089 |
| 0.3577 | 12.0 | 642 | 0.8694 | 0.615 | 0.6227 | 0.615 | 0.6089 |
| 0.3577 | 12.99 | 695 | 0.9201 | 0.635 | 0.6494 | 0.635 | 0.6260 |
| 0.3041 | 14.0 | 749 | 0.9186 | 0.645 | 0.6583 | 0.645 | 0.6374 |
| 0.3041 | 14.99 | 802 | 1.1683 | 0.63 | 0.6578 | 0.63 | 0.6129 |
| 0.2344 | 16.0 | 856 | 1.1405 | 0.625 | 0.6383 | 0.625 | 0.6158 |
| 0.2344 | 16.99 | 909 | 1.2451 | 0.625 | 0.6474 | 0.625 | 0.6102 |
| 0.208 | 18.0 | 963 | 1.1640 | 0.65 | 0.6671 | 0.65 | 0.6408 |
| 0.208 | 18.99 | 1016 | 1.2081 | 0.64 | 0.6583 | 0.64 | 0.6293 |
| 0.1757 | 19.81 | 1060 | 1.2153 | 0.64 | 0.6583 | 0.64 | 0.6293 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|