metadata
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
- generated_from_trainer
datasets:
- sem_eval_2024_task_2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: run1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sem_eval_2024_task_2
type: sem_eval_2024_task_2
config: sem_eval_2024_task_2_source
split: validation
args: sem_eval_2024_task_2_source
metrics:
- name: Accuracy
type: accuracy
value: 0.64
- name: Precision
type: precision
value: 0.6582994120307553
- name: Recall
type: recall
value: 0.64
- name: F1
type: f1
value: 0.6292863762743282
run1
This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2153
- Accuracy: 0.64
- Precision: 0.6583
- Recall: 0.64
- F1: 0.6293
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.99 | 53 | 0.6971 | 0.515 | 0.5272 | 0.515 | 0.4537 |
0.7029 | 2.0 | 107 | 0.6899 | 0.535 | 0.5413 | 0.535 | 0.5166 |
0.7029 | 2.99 | 160 | 0.6855 | 0.535 | 0.5399 | 0.5350 | 0.5203 |
0.6955 | 4.0 | 214 | 0.6698 | 0.565 | 0.5686 | 0.5650 | 0.5592 |
0.6955 | 4.99 | 267 | 0.6722 | 0.57 | 0.5703 | 0.5700 | 0.5696 |
0.6581 | 6.0 | 321 | 0.6367 | 0.61 | 0.6104 | 0.61 | 0.6096 |
0.6581 | 6.99 | 374 | 0.6973 | 0.58 | 0.5905 | 0.58 | 0.5675 |
0.5796 | 8.0 | 428 | 0.6925 | 0.625 | 0.6348 | 0.625 | 0.6180 |
0.5796 | 8.99 | 481 | 0.7539 | 0.61 | 0.6364 | 0.61 | 0.5902 |
0.4636 | 10.0 | 535 | 0.9313 | 0.575 | 0.6043 | 0.575 | 0.5429 |
0.4636 | 10.99 | 588 | 0.9028 | 0.615 | 0.6227 | 0.615 | 0.6089 |
0.3577 | 12.0 | 642 | 0.8694 | 0.615 | 0.6227 | 0.615 | 0.6089 |
0.3577 | 12.99 | 695 | 0.9201 | 0.635 | 0.6494 | 0.635 | 0.6260 |
0.3041 | 14.0 | 749 | 0.9186 | 0.645 | 0.6583 | 0.645 | 0.6374 |
0.3041 | 14.99 | 802 | 1.1683 | 0.63 | 0.6578 | 0.63 | 0.6129 |
0.2344 | 16.0 | 856 | 1.1405 | 0.625 | 0.6383 | 0.625 | 0.6158 |
0.2344 | 16.99 | 909 | 1.2451 | 0.625 | 0.6474 | 0.625 | 0.6102 |
0.208 | 18.0 | 963 | 1.1640 | 0.65 | 0.6671 | 0.65 | 0.6408 |
0.208 | 18.99 | 1016 | 1.2081 | 0.64 | 0.6583 | 0.64 | 0.6293 |
0.1757 | 19.81 | 1060 | 1.2153 | 0.64 | 0.6583 | 0.64 | 0.6293 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0