--- license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-base tags: - generated_from_trainer datasets: - sem_eval_2024_task_2 metrics: - accuracy - precision - recall - f1 model-index: - name: run1 results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2024_task_2 type: sem_eval_2024_task_2 config: sem_eval_2024_task_2_source split: validation args: sem_eval_2024_task_2_source metrics: - name: Accuracy type: accuracy value: 0.64 - name: Precision type: precision value: 0.6582994120307553 - name: Recall type: recall value: 0.64 - name: F1 type: f1 value: 0.6292863762743282 --- # run1 This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2153 - Accuracy: 0.64 - Precision: 0.6583 - Recall: 0.64 - F1: 0.6293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.99 | 53 | 0.6971 | 0.515 | 0.5272 | 0.515 | 0.4537 | | 0.7029 | 2.0 | 107 | 0.6899 | 0.535 | 0.5413 | 0.535 | 0.5166 | | 0.7029 | 2.99 | 160 | 0.6855 | 0.535 | 0.5399 | 0.5350 | 0.5203 | | 0.6955 | 4.0 | 214 | 0.6698 | 0.565 | 0.5686 | 0.5650 | 0.5592 | | 0.6955 | 4.99 | 267 | 0.6722 | 0.57 | 0.5703 | 0.5700 | 0.5696 | | 0.6581 | 6.0 | 321 | 0.6367 | 0.61 | 0.6104 | 0.61 | 0.6096 | | 0.6581 | 6.99 | 374 | 0.6973 | 0.58 | 0.5905 | 0.58 | 0.5675 | | 0.5796 | 8.0 | 428 | 0.6925 | 0.625 | 0.6348 | 0.625 | 0.6180 | | 0.5796 | 8.99 | 481 | 0.7539 | 0.61 | 0.6364 | 0.61 | 0.5902 | | 0.4636 | 10.0 | 535 | 0.9313 | 0.575 | 0.6043 | 0.575 | 0.5429 | | 0.4636 | 10.99 | 588 | 0.9028 | 0.615 | 0.6227 | 0.615 | 0.6089 | | 0.3577 | 12.0 | 642 | 0.8694 | 0.615 | 0.6227 | 0.615 | 0.6089 | | 0.3577 | 12.99 | 695 | 0.9201 | 0.635 | 0.6494 | 0.635 | 0.6260 | | 0.3041 | 14.0 | 749 | 0.9186 | 0.645 | 0.6583 | 0.645 | 0.6374 | | 0.3041 | 14.99 | 802 | 1.1683 | 0.63 | 0.6578 | 0.63 | 0.6129 | | 0.2344 | 16.0 | 856 | 1.1405 | 0.625 | 0.6383 | 0.625 | 0.6158 | | 0.2344 | 16.99 | 909 | 1.2451 | 0.625 | 0.6474 | 0.625 | 0.6102 | | 0.208 | 18.0 | 963 | 1.1640 | 0.65 | 0.6671 | 0.65 | 0.6408 | | 0.208 | 18.99 | 1016 | 1.2081 | 0.64 | 0.6583 | 0.64 | 0.6293 | | 0.1757 | 19.81 | 1060 | 1.2153 | 0.64 | 0.6583 | 0.64 | 0.6293 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0