File size: 13,699 Bytes
ecdf5a4
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eed4e9aa7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eed4e9aa830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eed4e9aa8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eed4e9aa950>", "_build": "<function ActorCriticPolicy._build at 0x7eed4e9aa9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7eed4e9aaa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eed4e9aab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eed4e9aab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7eed4e9aac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eed4e9aacb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eed4e9aad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eed4e9aadd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eed4eb3e280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704029441847924062, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAi0z13z2A/CqdnPid5Nb8JUVk+LqCiPQAAAAAAAAAAzQFZva5vhDkMWo+5PGZ0M46DSru8Bq44AACAPwAAAAAz6Eq+b+VwPV76FD4NDVS+3vF3PVb2E70AAAAAAAAAAJqLPTwCHbc/ArbHPiWVhz7NTli8TvqyvQAAAAAAAAAAricGv/NRI769/Ks60nAcOfcIKj4D/RS6AACAPwAAgD8m7Ni9w1UluiJ7IDgesSUzetkpuy0PPLcAAIA/AAAAAM1b5r1cR3m60O3XtXH+1DKVTIY70On0NAAAgD8AAIA/DSduvs+ZKT3KImc+an1ovgEP476dFca+AACAPwAAAAAK6oy+9Bk+vU31Wbt1CjG6VI+jPgxNlToAAIA/AACAP3MGrL1nnSQ/gpzavVXLzL6rOXC9qFA3vQAAAAAAAAAAc2c1vt7FmD8Moqq+ag0Zv4/ZJ77Ay0G9AAAAAAAAAADamDY+G3CcvGRlkD2+Ghi8/h4NviqL8LwAAIA/AACAP03o9j3x3sk9MtouvlkugL5QEKW5bgAbPAAAAAAAAAAATTNtPU3tfz4eeaO9C9ZKvkbGYTyFzii9AAAAAAAAAAAATzA+pSIjPiWzvr3tTV6+JerrvK3n7rwAAAAAAAAAACaY2j1F0wg+Kp+SvcaHUb6sMWM8tA0hPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHTxMnJDE6MAWyUTSoBjAF0lEdApEgXuTibUnV9lChoBkdAcd9pKBd2PmgHTQUBaAhHQKRIe3kPtlZ1fZQoaAZHQHNZvvBrN4ZoB0vyaAhHQKRItW3jMmp1fZQoaAZHQHB+mIwdsBRoB0vxaAhHQKRI0mnfl6t1fZQoaAZHQHAIw/oq0+loB0vRaAhHQKRJBZJ04ip1fZQoaAZHQG2ggFotcwBoB0vlaAhHQKRJEIEbHZN1fZQoaAZHP/0zfrKNhmZoB0t4aAhHQKRJRjc2zfJ1fZQoaAZHQEhYQQL/jsFoB0uxaAhHQKRJQs8PnSx1fZQoaAZHQG6ocvM8ox5oB00MAWgIR0CkSmUDdP+GdX2UKGgGR0BvQZa1TisGaAdNHgFoCEdApErKMNtqH3V9lChoBkdAcvCuivgWJ2gHS+NoCEdApEsYdQwbl3V9lChoBkdAckLVTrE9+2gHS9poCEdApEvdh5PdmHV9lChoBkdASGfTRYzSC2gHS61oCEdApEv35FgDzXV9lChoBkdAcWvdkJ8fFWgHTQABaAhHQKRMFNYbKih1fZQoaAZHQGILDVhCtzVoB03oA2gIR0CkTJkqtozvdX2UKGgGR0BwxUmv4dp7aAdL+GgIR0CkTKdGI9DAdX2UKGgGR0BxEQC3gDRuaAdNBQFoCEdApE0g0oBq9HV9lChoBkdAcWqQv6CUYGgHTQABaAhHQKRNRgNPP9l1fZQoaAZHQHIDd+5OJtVoB00wA2gIR0CkTW2ll9SddX2UKGgGR0BvC50OmR/3aAdL3GgIR0CkTekr5IpZdX2UKGgGR0ByuE8vEjxDaAdL02gIR0CkTirmZE2HdX2UKGgGR0ByBUYsNDtxaAdNWQJoCEdApE5AVdonKHV9lChoBkdAbiFtBv73wmgHS99oCEdApE+F4A0bcXV9lChoBkdAcFQK02LpA2gHTQ4BaAhHQKRPh2TPjXF1fZQoaAZHQHMuQbEP1+RoB02sAWgIR0CkT5Auyu6mdX2UKGgGR0BxREMpgCwKaAdL4WgIR0CkT8dtEXtTdX2UKGgGR0BvMOkxh2GJaAdL1WgIR0CkUC699MK1dX2UKGgGR0Bw8KrU9ZA6aAdL3GgIR0CkUD269TP0dX2UKGgGR0BuBb1TR6WxaAdL02gIR0CkUJk0aZQYdX2UKGgGR0BShAPNFBppaAdN6ANoCEdApFC0R3/xUnV9lChoBkdAccEA44p+dGgHS7loCEdApFFCsQumJnV9lChoBkdAZVPO/L1VYWgHTegDaAhHQKRRpW1c+q11fZQoaAZHQHESYMKCxu9oB0viaAhHQKRRyTmnwXt1fZQoaAZHQHIlaqfe1rtoB00DAWgIR0CkUgrAHmihdX2UKGgGR0Bxr7nPmganaAdNIgFoCEdApFIL2xptanV9lChoBkdAT/7T6SDAamgHS65oCEdApFJeznied3V9lChoBkdAclcwSJ0nxGgHTbwBaAhHQKRS5Gsmv4d1fZQoaAZHQHA4b+5vtMRoB0vlaAhHQKRS6c/+sHV1fZQoaAZHQHDyFFx4pttoB0v0aAhHQKRTKQ176YV1fZQoaAZHQHGmAtjCpFVoB00SAWgIR0CkU5DOC5EudX2UKGgGR0Byxt6lchTwaAdNAQFoCEdApFPudAgPmXV9lChoBkdARTzxusLfDWgHS6FoCEdApFReY2Kl6HV9lChoBkdAb+uQf6oES2gHS+RoCEdApFSYMpgCwXV9lChoBkdAbwWnjyWiUWgHTRQBaAhHQKRUrEORT0h1fZQoaAZHQHHAapYLb6BoB0u4aAhHQKRUvS3solV1fZQoaAZHQHJi60dBBzFoB0vTaAhHQKRU3rQgLZ11fZQoaAZHQHH01sguAZtoB0vqaAhHQKRVFMDfWMF1fZQoaAZHQHBlT4gzP8hoB0vuaAhHQKRV/FcY64l1fZQoaAZHQHHsdJvo/zJoB0vPaAhHQKRWGh37k4p1fZQoaAZHQHBHu14Pf9BoB02pAWgIR0CkVqMvqTr3dX2UKGgGR0BuMSqKgqVhaAdL0WgIR0CkVtfzjFQ3dX2UKGgGR0Byr8Tg2qDLaAdNpgFoCEdApFcWEbo8p3V9lChoBkdAbdImKIi1RmgHS8RoCEdApFffGACnxnV9lChoBkdAcAhFtbcGkmgHS8hoCEdApFffUnXumnV9lChoBkdAb2JkRzzVc2gHS+JoCEdApGKuDjBEa3V9lChoBkdAcX7XFcY64mgHTSQBaAhHQKRiyTzND+l1fZQoaAZHQG49HGsFMZhoB0vbaAhHQKRiyzcAR051fZQoaAZHQF6ZRW912aFoB03oA2gIR0CkYtfJvHcUdX2UKGgGR0BxbhfhMrVfaAdNCwFoCEdApGMGSdOIqXV9lChoBkdAQ27NIK+i8GgHS79oCEdApGNMkt29tnV9lChoBkdAcxfeiSJTEWgHTZEBaAhHQKRjoGGEf1Z1fZQoaAZHQG9Mjtw71ZloB0vgaAhHQKRkU9dNWU91fZQoaAZHQHDLtjoZAIJoB0vpaAhHQKRkq8gZCOZ1fZQoaAZHQHGFOk1uR9xoB0vZaAhHQKRlcmWt2cJ1fZQoaAZHQEPVugpSaVloB0usaAhHQKRleQYDT0B1fZQoaAZHQHNQcy31BdFoB0vqaAhHQKRlx3K0UoN1fZQoaAZHQHHgOdbxEv1oB03OAWgIR0CkZfMju8brdX2UKGgGR0BxCLRZ2ZAqaAdNBwFoCEdApGcpacI7eXV9lChoBkdAcE3xoIv8ImgHTQ0BaAhHQKRnKU21lXl1fZQoaAZHQHE9JuVHFxZoB0v+aAhHQKRnTGKAJ9l1fZQoaAZHQF7fwuuieupoB03oA2gIR0CkZ2hyS3b3dX2UKGgGR0BzGlYeT3ZgaAdNAgFoCEdApGgF1W8yvnV9lChoBkdAcoD6nzg/DGgHS+NoCEdApGhG12JSBXV9lChoBkdAcG3dBSk0rWgHS/NoCEdApGjj/VAiV3V9lChoBkdATaLbWVeKK2gHS9toCEdApGlGrQw9JXV9lChoBkdAcV4/+bVjJGgHS+doCEdApGnxGc4HX3V9lChoBkdAcWPPk7wKB2gHTQ0BaAhHQKRqeYnfEXN1fZQoaAZHQHCjJ1mrbQFoB0vGaAhHQKRqxW8yvcJ1fZQoaAZHQHCV3Sro4dZoB00RAWgIR0CkbAxiw0O3dX2UKGgGR0ByqoT9KmKqaAdL02gIR0CkbCwe/5+IdX2UKGgGR0BwgfDCP6sRaAdNLAFoCEdApGy9DUmUn3V9lChoBkdAcN8DpC8e0WgHTXQCaAhHQKRuHSUC7sh1fZQoaAZHQHBKyCrcTJ1oB00JAWgIR0CkbilIEr5JdX2UKGgGR0Bw46mzjWCmaAdLz2gIR0CkbjS39aUzdX2UKGgGR0Bkmgnx8UmEaAdN6ANoCEdApG5DB9Cu2nV9lChoBkdAcCsplz2ex2gHTVYBaAhHQKRum4gieNF1fZQoaAZHQG7zwO4G2ThoB0vWaAhHQKRu5tAs0551fZQoaAZHQHGwLYXfqHJoB0vMaAhHQKRwapkPMB91fZQoaAZHQHE4u8kD6nBoB0vqaAhHQKRw6enyd4F1fZQoaAZHQHFpX974SHxoB00MAWgIR0Ckcs2njyWidX2UKGgGR0A6wCyQgcLjaAdLtWgIR0Ckcs4RdyDJdX2UKGgGR0BQcW912aDxaAdN6ANoCEdApHLT28IzFnV9lChoBkdAcPDaMrEtNGgHTTADaAhHQKRzL8gpz911fZQoaAZHQHJGEBCD28JoB02CAWgIR0Ckc3L4nF5wdX2UKGgGR0BvXbXxvvSdaAdL6GgIR0Ckc5rtmcvvdX2UKGgGR0BxpxsKsuFpaAdL+mgIR0CkdAcv24/edX2UKGgGR0BXu14Pf8/EaAdN6ANoCEdApHSys2eg+XV9lChoBkdAcE/2AoXsPmgHTTIBaAhHQKR1knSfDk51fZQoaAZHQCcsmShakh1oB0tnaAhHQKR12xY7q6h1fZQoaAZHQG56/RNRFZxoB0vYaAhHQKR2rOfukUN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}