hontou-ni-baka
commited on
Commit
•
ff9ff38
1
Parent(s):
8bfb483
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -160.75 +/- 24.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eed4e9aa7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eed4e9aa830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eed4e9aa8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eed4e9aa950>", "_build": "<function ActorCriticPolicy._build at 0x7eed4e9aa9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7eed4e9aaa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eed4e9aab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eed4e9aab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7eed4e9aac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eed4e9aacb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eed4e9aad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eed4e9aadd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eed4eb3e280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704028796507483225, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2f5z7IYoI/4tqtPuuQV799tKQ+EktrPQAAAAAAAAAAQw6SPoUHeT+bFNc+ZB46v1FAo7wDK2e9AAAAAAAAAAAzPeC8hgqeP2B6Xr7WzSS/2SoKPNsl0rwAAAAAAAAAAE0QDD1E9ro/JUIxP2+J3T5LjNO86iCWvQAAAAAAAAAARg0tPpcTLT/CkQA/wihVv5t30L62Cbk9AAAAAAAAAAAlVK++ZhicP5nTCL+6Jj6/nRlsvNrnDL4AAAAAAAAAADPDVL51hWg/FT7bvmVdKL971V++zv5/vgAAAAAAAAAAMPGGPlzRiz+E0yY/Ky81vyg5K71e1Dk+AAAAAAAAAABj1Xg/Q3ISPaWgPT9q2KS/Iz8fP5LcjT4AAAAAAAAAAJoHmLy+Bbs/WbiYvgdRnD4e8i88ZsKCvAAAAAAAAAAABnK9vr83oD9QDAi/BrHovtwm2739/Xa+AAAAAAAAAABNPmY9CiKrPzMLuD6JdqG+HSicvRKMmL0AAAAAAAAAAAC8ojz8H4g/dl4hPXkjHr8bBfg9E/S9PAAAAAAAAAAA4ABxviMCDD9LPHK+c0ZGv/2+XD0+wwo9AAAAAAAAAAD9Grs+15sPP+LesD5Wolq/8sb6PuYphz4AAAAAAAAAAOAKor6t+Bi98pzJvjtDtr+KpsE8JW3PvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFOUd/axoqWMAWyUS1mMAXSUR0CKcYGRFI/adX2UKGgGR8BbsYXfqHGkaAdLWGgIR0CKcZ9QXQ+mdX2UKGgGR8BZkOieumrKaAdLgmgIR0CKcc+cpb2UdX2UKGgGR8BW0vPszEaVaAdLT2gIR0CKcjF9a2WqdX2UKGgGR8BXGQevIOpbaAdLO2gIR0CKckvJzT4MdX2UKGgGR8BX7U2gnMMaaAdLc2gIR0CKcmhcqvvCdX2UKGgGR8BcbZbhWHUMaAdLgmgIR0CKc7gKF7D3dX2UKGgGR8BQmZAprk8zaAdLdmgIR0CKc8mpEQXidX2UKGgGR8BAAM5GSZBtaAdLiGgIR0CKc+Q0XP7fdX2UKGgGR8BEvrxAjY7JaAdLbWgIR0CKdARU3n6mdX2UKGgGR8BYdxEWqLjxaAdLgmgIR0CKdFN34bjtdX2UKGgGR8BOoseOn2qUaAdLXGgIR0CKdDfWMCLddX2UKGgGR8BfmD2alUIcaAdLUGgIR0CKdFo9s7+2dX2UKGgGR8BGAGO+7Dl6aAdLpWgIR0CKdHNX5nDjdX2UKGgGR8BXXZYPoV2zaAdLcWgIR0CKdH7vXsgMdX2UKGgGR8BXBSlBQemvaAdLbmgIR0CKdTWU8mrsdX2UKGgGR8BgQ/eFcpsoaAdLT2gIR0CKdTBwdbPhdX2UKGgGR8BaY2zWwu/UaAdLUmgIR0CKdTH0btJGdX2UKGgGR8BWxQb6xgRcaAdLdGgIR0CKdZ8sMAmzdX2UKGgGR8BXOIi1RceKaAdLc2gIR0CKdeSQo1DTdX2UKGgGR8Ba9UuHvc8DaAdLd2gIR0CKdm/8EV32dX2UKGgGR8BCNeo1k1/EaAdLS2gIR0CKdrQ0GeMAdX2UKGgGR8BT92NipeeGaAdLT2gIR0CKdzJf6XSjdX2UKGgGR8BohdZDArQPaAdLqGgIR0CKd6ItUXHjdX2UKGgGR8BRrsnVoYelaAdLY2gIR0CKd+9cKPXDdX2UKGgGR8BROBkRSP2gaAdLUGgIR0CKeC1Q66redX2UKGgGR8BYpi1E3KjjaAdLfGgIR0CKeEmpEQXidX2UKGgGR8BgTt0A93bFaAdLgWgIR0CKeGiKR+z/dX2UKGgGR8BYHEaAFxGUaAdLW2gIR0CKeImKqGUOdX2UKGgGR8BT1gUDdP+GaAdLgGgIR0CKeRLZi/fwdX2UKGgGR8BD2bfHggoxaAdLgWgIR0CKeSkTpPhydX2UKGgGR8BgOU0Nz8xcaAdLY2gIR0CKeTM/yGzsdX2UKGgGR8BogCJMxoIwaAdLjGgIR0CKeUipNsWPdX2UKGgGR8Bg7UhHLA58aAdLcWgIR0CKeVTyauwHdX2UKGgGR8BUNYxk/bCaaAdLoWgIR0CKeayad+XrdX2UKGgGR8BbyqCcwxnGaAdLWmgIR0CKeevyLAHndX2UKGgGR8BoWGeHzpX7aAdLaGgIR0CKeh9rGipOdX2UKGgGR8BR0X1WbPQfaAdLWWgIR0CKelNKRMewdX2UKGgGR8BPNL1M/QjVaAdLQWgIR0CKepsAvL5idX2UKGgGR8BaPvFefI0ZaAdLmmgIR0CKe0znA6+4dX2UKGgGR8BbG/IKc/dJaAdLamgIR0CKe0hkAggYdX2UKGgGR8BWCJOzposaaAdLa2gIR0CKe5o2XLNfdX2UKGgGR8BQOBhDw6QvaAdLTWgIR0CKe68Djin6dX2UKGgGR8BVJpOafBepaAdLXmgIR0CKe8LIgeRxdX2UKGgGR8Ba02NR3u/laAdLS2gIR0CKe9IS13MZdX2UKGgGR8BTXeaOPvKEaAdLUGgIR0CKe+oKD017dX2UKGgGR8BYi0gGKQ7taAdLbWgIR0CKfAiDdxhldX2UKGgGR8BPpMGPgeijaAdLWmgIR0CKfDta6jFidX2UKGgGR8BaeZn13+uOaAdLZ2gIR0CKfMmOU+s6dX2UKGgGR8Bko0Lx7RfGaAdLnGgIR0CKfYqsEJSjdX2UKGgGR8BmxUDKYAsDaAdLXWgIR0CKffMg2ZRbdX2UKGgGR8BTygHZ9NN8aAdLfmgIR0CKfmmR/3FldX2UKGgGR8BZpNpdrwfAaAdLi2gIR0CKfp69kBjndX2UKGgGR8BW3Fe8f3evaAdLVGgIR0CKfuADJU5udX2UKGgGR8BKB2vjfek6aAdLhGgIR0CKfuysS00FdX2UKGgGR8BaLjn/1g6VaAdLXWgIR0CKfxK7I1cddX2UKGgGR8BbwkgjhUBGaAdLaWgIR0CKfyubI91VdX2UKGgGR8BayP+0gKWtaAdLjGgIR0CKf2g+yJKrdX2UKGgGR8BCpSB06o2oaAdLV2gIR0CKf3mZE2HddX2UKGgGR8BXdUVvddmhaAdLcWgIR0CKf3w1BMSLdX2UKGgGR8A/oR02cawVaAdLYmgIR0CKf7FKkEcLdX2UKGgGR8BZkUD+zdDZaAdLZWgIR0CKf6vN/vv0dX2UKGgGR8BTDCidrftQaAdLc2gIR0CKf+vexfOVdX2UKGgGR8BUPy9RJmNBaAdLUGgIR0CKf9eWOZLJdX2UKGgGR8BVVrNjbzshaAdLbmgIR0CKf91tfoicdX2UKGgGR8BH0HsTnJT3aAdLSWgIR0CKgOfYBeXzdX2UKGgGR8BSaHTRYzSDaAdLXGgIR0CKgSPSUkfLdX2UKGgGR8A/689fTkQxaAdLV2gIR0CKgZMGHHmzdX2UKGgGR8BPGJK8L8aXaAdLdmgIR0CKgb+hGpdbdX2UKGgGR8Akarfcer+6aAdLRmgIR0CKgcf/3nIRdX2UKGgGR8A7FI1LrX18aAdLXGgIR0CKgiDaoMrmdX2UKGgGR8BXRIis4ku6aAdLYGgIR0CKghknTiKjdX2UKGgGR8BWWf8IiTt+aAdLYGgIR0CKgtbUPQOXdX2UKGgGR8Bdx5+tr9EUaAdLWGgIR0CKgsbo8p1BdX2UKGgGR8BUwStV7x/eaAdLdGgIR0CKgtGWD6FedX2UKGgGR8BTfGoWHk92aAdLXmgIR0CKgvWfbsWwdX2UKGgGR8BgGpBE8aGYaAdLc2gIR0CKg3paiblSdX2UKGgGR8BNYAq3EyckaAdLfGgIR0CKg54u9OARdX2UKGgGR8Bdwhisny/caAdLeWgIR0CKg/kOI68ydX2UKGgGR8BLbaJqIrOJaAdLiWgIR0CKhAaMJhOQdX2UKGgGR8BGQufmLcbjaAdLjWgIR0CKg+0rK/21dX2UKGgGR8BVoXC9AX2vaAdLSmgIR0CKhCIpH7P6dX2UKGgGR8BaOIbjtG/faAdLYWgIR0CKhD+wTufFdX2UKGgGR8BN6uc+aBqcaAdLZWgIR0CKhJKEFnqWdX2UKGgGR8BXTPZM+NcXaAdLZmgIR0CKhSkLQXyidX2UKGgGR8BQxEWqLjxTaAdLS2gIR0CKhU1tO2y+dX2UKGgGR8BZSXazu4PPaAdLa2gIR0CKhbgBLf1pdX2UKGgGR8BW3nJ9y926aAdLc2gIR0CKhhyDqW1MdX2UKGgGR8BV9gXZXdTHaAdLf2gIR0CKhipZwGW2dX2UKGgGR8BSc55zHS4OaAdLX2gIR0CKhhF8XvYwdX2UKGgGR8BKT68Yht+DaAdLQWgIR0CKhiqm0mdBdX2UKGgGR8BTPvqTr3TNaAdLUmgIR0CKhlJcPe54dX2UKGgGR8Ba0a6FuejEaAdLaWgIR0CKhnjxTbWVdX2UKGgGR8Baky2+fywwaAdLWWgIR0CKhwqbSZ0CdX2UKGgGR8BLu8WCVbA2aAdLVmgIR0CKhysOoYNzdX2UKGgGR8BWcmE4//vOaAdLfGgIR0CKhzFSbYsedX2UKGgGR8BGILhBJI1+aAdLfmgIR0CKh+dNFjNIdX2UKGgGR8BSOVPWQOnVaAdLeWgIR0CKiBSro4dZdX2UKGgGR8BWfj3/Pw/gaAdLSWgIR0CKiD2t+1BudX2UKGgGR8BO8zkhib2EaAdLbmgIR0CKiFuG9HtndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02256deec9d41cf8968f293dc9d88be6d0ae38edd34bb69b9232f9dc4ac8b68f
|
3 |
+
size 147931
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eed4e9aa7a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eed4e9aa830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eed4e9aa8c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eed4e9aa950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eed4e9aa9e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eed4e9aaa70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eed4e9aab00>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eed4e9aab90>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eed4e9aac20>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eed4e9aacb0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eed4e9aad40>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eed4e9aadd0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7eed4eb3e280>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 114688,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1704028796507483225,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2f5z7IYoI/4tqtPuuQV799tKQ+EktrPQAAAAAAAAAAQw6SPoUHeT+bFNc+ZB46v1FAo7wDK2e9AAAAAAAAAAAzPeC8hgqeP2B6Xr7WzSS/2SoKPNsl0rwAAAAAAAAAAE0QDD1E9ro/JUIxP2+J3T5LjNO86iCWvQAAAAAAAAAARg0tPpcTLT/CkQA/wihVv5t30L62Cbk9AAAAAAAAAAAlVK++ZhicP5nTCL+6Jj6/nRlsvNrnDL4AAAAAAAAAADPDVL51hWg/FT7bvmVdKL971V++zv5/vgAAAAAAAAAAMPGGPlzRiz+E0yY/Ky81vyg5K71e1Dk+AAAAAAAAAABj1Xg/Q3ISPaWgPT9q2KS/Iz8fP5LcjT4AAAAAAAAAAJoHmLy+Bbs/WbiYvgdRnD4e8i88ZsKCvAAAAAAAAAAABnK9vr83oD9QDAi/BrHovtwm2739/Xa+AAAAAAAAAABNPmY9CiKrPzMLuD6JdqG+HSicvRKMmL0AAAAAAAAAAAC8ojz8H4g/dl4hPXkjHr8bBfg9E/S9PAAAAAAAAAAA4ABxviMCDD9LPHK+c0ZGv/2+XD0+wwo9AAAAAAAAAAD9Grs+15sPP+LesD5Wolq/8sb6PuYphz4AAAAAAAAAAOAKor6t+Bi98pzJvjtDtr+KpsE8JW3PvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFOUd/axoqWMAWyUS1mMAXSUR0CKcYGRFI/adX2UKGgGR8BbsYXfqHGkaAdLWGgIR0CKcZ9QXQ+mdX2UKGgGR8BZkOieumrKaAdLgmgIR0CKcc+cpb2UdX2UKGgGR8BW0vPszEaVaAdLT2gIR0CKcjF9a2WqdX2UKGgGR8BXGQevIOpbaAdLO2gIR0CKckvJzT4MdX2UKGgGR8BX7U2gnMMaaAdLc2gIR0CKcmhcqvvCdX2UKGgGR8BcbZbhWHUMaAdLgmgIR0CKc7gKF7D3dX2UKGgGR8BQmZAprk8zaAdLdmgIR0CKc8mpEQXidX2UKGgGR8BAAM5GSZBtaAdLiGgIR0CKc+Q0XP7fdX2UKGgGR8BEvrxAjY7JaAdLbWgIR0CKdARU3n6mdX2UKGgGR8BYdxEWqLjxaAdLgmgIR0CKdFN34bjtdX2UKGgGR8BOoseOn2qUaAdLXGgIR0CKdDfWMCLddX2UKGgGR8BfmD2alUIcaAdLUGgIR0CKdFo9s7+2dX2UKGgGR8BGAGO+7Dl6aAdLpWgIR0CKdHNX5nDjdX2UKGgGR8BXXZYPoV2zaAdLcWgIR0CKdH7vXsgMdX2UKGgGR8BXBSlBQemvaAdLbmgIR0CKdTWU8mrsdX2UKGgGR8BgQ/eFcpsoaAdLT2gIR0CKdTBwdbPhdX2UKGgGR8BaY2zWwu/UaAdLUmgIR0CKdTH0btJGdX2UKGgGR8BWxQb6xgRcaAdLdGgIR0CKdZ8sMAmzdX2UKGgGR8BXOIi1RceKaAdLc2gIR0CKdeSQo1DTdX2UKGgGR8Ba9UuHvc8DaAdLd2gIR0CKdm/8EV32dX2UKGgGR8BCNeo1k1/EaAdLS2gIR0CKdrQ0GeMAdX2UKGgGR8BT92NipeeGaAdLT2gIR0CKdzJf6XSjdX2UKGgGR8BohdZDArQPaAdLqGgIR0CKd6ItUXHjdX2UKGgGR8BRrsnVoYelaAdLY2gIR0CKd+9cKPXDdX2UKGgGR8BROBkRSP2gaAdLUGgIR0CKeC1Q66redX2UKGgGR8BYpi1E3KjjaAdLfGgIR0CKeEmpEQXidX2UKGgGR8BgTt0A93bFaAdLgWgIR0CKeGiKR+z/dX2UKGgGR8BYHEaAFxGUaAdLW2gIR0CKeImKqGUOdX2UKGgGR8BT1gUDdP+GaAdLgGgIR0CKeRLZi/fwdX2UKGgGR8BD2bfHggoxaAdLgWgIR0CKeSkTpPhydX2UKGgGR8BgOU0Nz8xcaAdLY2gIR0CKeTM/yGzsdX2UKGgGR8BogCJMxoIwaAdLjGgIR0CKeUipNsWPdX2UKGgGR8Bg7UhHLA58aAdLcWgIR0CKeVTyauwHdX2UKGgGR8BUNYxk/bCaaAdLoWgIR0CKeayad+XrdX2UKGgGR8BbyqCcwxnGaAdLWmgIR0CKeevyLAHndX2UKGgGR8BoWGeHzpX7aAdLaGgIR0CKeh9rGipOdX2UKGgGR8BR0X1WbPQfaAdLWWgIR0CKelNKRMewdX2UKGgGR8BPNL1M/QjVaAdLQWgIR0CKepsAvL5idX2UKGgGR8BaPvFefI0ZaAdLmmgIR0CKe0znA6+4dX2UKGgGR8BbG/IKc/dJaAdLamgIR0CKe0hkAggYdX2UKGgGR8BWCJOzposaaAdLa2gIR0CKe5o2XLNfdX2UKGgGR8BQOBhDw6QvaAdLTWgIR0CKe68Djin6dX2UKGgGR8BVJpOafBepaAdLXmgIR0CKe8LIgeRxdX2UKGgGR8Ba02NR3u/laAdLS2gIR0CKe9IS13MZdX2UKGgGR8BTXeaOPvKEaAdLUGgIR0CKe+oKD017dX2UKGgGR8BYi0gGKQ7taAdLbWgIR0CKfAiDdxhldX2UKGgGR8BPpMGPgeijaAdLWmgIR0CKfDta6jFidX2UKGgGR8BaeZn13+uOaAdLZ2gIR0CKfMmOU+s6dX2UKGgGR8Bko0Lx7RfGaAdLnGgIR0CKfYqsEJSjdX2UKGgGR8BmxUDKYAsDaAdLXWgIR0CKffMg2ZRbdX2UKGgGR8BTygHZ9NN8aAdLfmgIR0CKfmmR/3FldX2UKGgGR8BZpNpdrwfAaAdLi2gIR0CKfp69kBjndX2UKGgGR8BW3Fe8f3evaAdLVGgIR0CKfuADJU5udX2UKGgGR8BKB2vjfek6aAdLhGgIR0CKfuysS00FdX2UKGgGR8BaLjn/1g6VaAdLXWgIR0CKfxK7I1cddX2UKGgGR8BbwkgjhUBGaAdLaWgIR0CKfyubI91VdX2UKGgGR8BayP+0gKWtaAdLjGgIR0CKf2g+yJKrdX2UKGgGR8BCpSB06o2oaAdLV2gIR0CKf3mZE2HddX2UKGgGR8BXdUVvddmhaAdLcWgIR0CKf3w1BMSLdX2UKGgGR8A/oR02cawVaAdLYmgIR0CKf7FKkEcLdX2UKGgGR8BZkUD+zdDZaAdLZWgIR0CKf6vN/vv0dX2UKGgGR8BTDCidrftQaAdLc2gIR0CKf+vexfOVdX2UKGgGR8BUPy9RJmNBaAdLUGgIR0CKf9eWOZLJdX2UKGgGR8BVVrNjbzshaAdLbmgIR0CKf91tfoicdX2UKGgGR8BH0HsTnJT3aAdLSWgIR0CKgOfYBeXzdX2UKGgGR8BSaHTRYzSDaAdLXGgIR0CKgSPSUkfLdX2UKGgGR8A/689fTkQxaAdLV2gIR0CKgZMGHHmzdX2UKGgGR8BPGJK8L8aXaAdLdmgIR0CKgb+hGpdbdX2UKGgGR8Akarfcer+6aAdLRmgIR0CKgcf/3nIRdX2UKGgGR8A7FI1LrX18aAdLXGgIR0CKgiDaoMrmdX2UKGgGR8BXRIis4ku6aAdLYGgIR0CKghknTiKjdX2UKGgGR8BWWf8IiTt+aAdLYGgIR0CKgtbUPQOXdX2UKGgGR8Bdx5+tr9EUaAdLWGgIR0CKgsbo8p1BdX2UKGgGR8BUwStV7x/eaAdLdGgIR0CKgtGWD6FedX2UKGgGR8BTfGoWHk92aAdLXmgIR0CKgvWfbsWwdX2UKGgGR8BgGpBE8aGYaAdLc2gIR0CKg3paiblSdX2UKGgGR8BNYAq3EyckaAdLfGgIR0CKg54u9OARdX2UKGgGR8Bdwhisny/caAdLeWgIR0CKg/kOI68ydX2UKGgGR8BLbaJqIrOJaAdLiWgIR0CKhAaMJhOQdX2UKGgGR8BGQufmLcbjaAdLjWgIR0CKg+0rK/21dX2UKGgGR8BVoXC9AX2vaAdLSmgIR0CKhCIpH7P6dX2UKGgGR8BaOIbjtG/faAdLYWgIR0CKhD+wTufFdX2UKGgGR8BN6uc+aBqcaAdLZWgIR0CKhJKEFnqWdX2UKGgGR8BXTPZM+NcXaAdLZmgIR0CKhSkLQXyidX2UKGgGR8BQxEWqLjxTaAdLS2gIR0CKhU1tO2y+dX2UKGgGR8BZSXazu4PPaAdLa2gIR0CKhbgBLf1pdX2UKGgGR8BW3nJ9y926aAdLc2gIR0CKhhyDqW1MdX2UKGgGR8BV9gXZXdTHaAdLf2gIR0CKhipZwGW2dX2UKGgGR8BSc55zHS4OaAdLX2gIR0CKhhF8XvYwdX2UKGgGR8BKT68Yht+DaAdLQWgIR0CKhiqm0mdBdX2UKGgGR8BTPvqTr3TNaAdLUmgIR0CKhlJcPe54dX2UKGgGR8Ba0a6FuejEaAdLaWgIR0CKhnjxTbWVdX2UKGgGR8Baky2+fywwaAdLWWgIR0CKhwqbSZ0CdX2UKGgGR8BLu8WCVbA2aAdLVmgIR0CKhysOoYNzdX2UKGgGR8BWcmE4//vOaAdLfGgIR0CKhzFSbYsedX2UKGgGR8BGILhBJI1+aAdLfmgIR0CKh+dNFjNIdX2UKGgGR8BSOVPWQOnVaAdLeWgIR0CKiBSro4dZdX2UKGgGR8BWfj3/Pw/gaAdLSWgIR0CKiD2t+1BudX2UKGgGR8BO8zkhib2EaAdLbmgIR0CKiFuG9HtndWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 28,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b715884e12372cdc0d060a4e442755ecaf7d42785de93d5f1a283f0b4ef96e28
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b27d44e462322dbed15dae51709dcb1d9df3e47e40b5d2370874393c33b40c9
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (204 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -160.74854508177432, "std_reward": 24.098619351904958, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-31T13:25:17.595123"}
|