hontou-ni-baka commited on
Commit
ff9ff38
1 Parent(s): 8bfb483

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -160.75 +/- 24.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eed4e9aa7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eed4e9aa830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eed4e9aa8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eed4e9aa950>", "_build": "<function ActorCriticPolicy._build at 0x7eed4e9aa9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7eed4e9aaa70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eed4e9aab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eed4e9aab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7eed4e9aac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eed4e9aacb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eed4e9aad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eed4e9aadd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eed4eb3e280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704028796507483225, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2f5z7IYoI/4tqtPuuQV799tKQ+EktrPQAAAAAAAAAAQw6SPoUHeT+bFNc+ZB46v1FAo7wDK2e9AAAAAAAAAAAzPeC8hgqeP2B6Xr7WzSS/2SoKPNsl0rwAAAAAAAAAAE0QDD1E9ro/JUIxP2+J3T5LjNO86iCWvQAAAAAAAAAARg0tPpcTLT/CkQA/wihVv5t30L62Cbk9AAAAAAAAAAAlVK++ZhicP5nTCL+6Jj6/nRlsvNrnDL4AAAAAAAAAADPDVL51hWg/FT7bvmVdKL971V++zv5/vgAAAAAAAAAAMPGGPlzRiz+E0yY/Ky81vyg5K71e1Dk+AAAAAAAAAABj1Xg/Q3ISPaWgPT9q2KS/Iz8fP5LcjT4AAAAAAAAAAJoHmLy+Bbs/WbiYvgdRnD4e8i88ZsKCvAAAAAAAAAAABnK9vr83oD9QDAi/BrHovtwm2739/Xa+AAAAAAAAAABNPmY9CiKrPzMLuD6JdqG+HSicvRKMmL0AAAAAAAAAAAC8ojz8H4g/dl4hPXkjHr8bBfg9E/S9PAAAAAAAAAAA4ABxviMCDD9LPHK+c0ZGv/2+XD0+wwo9AAAAAAAAAAD9Grs+15sPP+LesD5Wolq/8sb6PuYphz4AAAAAAAAAAOAKor6t+Bi98pzJvjtDtr+KpsE8JW3PvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFOUd/axoqWMAWyUS1mMAXSUR0CKcYGRFI/adX2UKGgGR8BbsYXfqHGkaAdLWGgIR0CKcZ9QXQ+mdX2UKGgGR8BZkOieumrKaAdLgmgIR0CKcc+cpb2UdX2UKGgGR8BW0vPszEaVaAdLT2gIR0CKcjF9a2WqdX2UKGgGR8BXGQevIOpbaAdLO2gIR0CKckvJzT4MdX2UKGgGR8BX7U2gnMMaaAdLc2gIR0CKcmhcqvvCdX2UKGgGR8BcbZbhWHUMaAdLgmgIR0CKc7gKF7D3dX2UKGgGR8BQmZAprk8zaAdLdmgIR0CKc8mpEQXidX2UKGgGR8BAAM5GSZBtaAdLiGgIR0CKc+Q0XP7fdX2UKGgGR8BEvrxAjY7JaAdLbWgIR0CKdARU3n6mdX2UKGgGR8BYdxEWqLjxaAdLgmgIR0CKdFN34bjtdX2UKGgGR8BOoseOn2qUaAdLXGgIR0CKdDfWMCLddX2UKGgGR8BfmD2alUIcaAdLUGgIR0CKdFo9s7+2dX2UKGgGR8BGAGO+7Dl6aAdLpWgIR0CKdHNX5nDjdX2UKGgGR8BXXZYPoV2zaAdLcWgIR0CKdH7vXsgMdX2UKGgGR8BXBSlBQemvaAdLbmgIR0CKdTWU8mrsdX2UKGgGR8BgQ/eFcpsoaAdLT2gIR0CKdTBwdbPhdX2UKGgGR8BaY2zWwu/UaAdLUmgIR0CKdTH0btJGdX2UKGgGR8BWxQb6xgRcaAdLdGgIR0CKdZ8sMAmzdX2UKGgGR8BXOIi1RceKaAdLc2gIR0CKdeSQo1DTdX2UKGgGR8Ba9UuHvc8DaAdLd2gIR0CKdm/8EV32dX2UKGgGR8BCNeo1k1/EaAdLS2gIR0CKdrQ0GeMAdX2UKGgGR8BT92NipeeGaAdLT2gIR0CKdzJf6XSjdX2UKGgGR8BohdZDArQPaAdLqGgIR0CKd6ItUXHjdX2UKGgGR8BRrsnVoYelaAdLY2gIR0CKd+9cKPXDdX2UKGgGR8BROBkRSP2gaAdLUGgIR0CKeC1Q66redX2UKGgGR8BYpi1E3KjjaAdLfGgIR0CKeEmpEQXidX2UKGgGR8BgTt0A93bFaAdLgWgIR0CKeGiKR+z/dX2UKGgGR8BYHEaAFxGUaAdLW2gIR0CKeImKqGUOdX2UKGgGR8BT1gUDdP+GaAdLgGgIR0CKeRLZi/fwdX2UKGgGR8BD2bfHggoxaAdLgWgIR0CKeSkTpPhydX2UKGgGR8BgOU0Nz8xcaAdLY2gIR0CKeTM/yGzsdX2UKGgGR8BogCJMxoIwaAdLjGgIR0CKeUipNsWPdX2UKGgGR8Bg7UhHLA58aAdLcWgIR0CKeVTyauwHdX2UKGgGR8BUNYxk/bCaaAdLoWgIR0CKeayad+XrdX2UKGgGR8BbyqCcwxnGaAdLWmgIR0CKeevyLAHndX2UKGgGR8BoWGeHzpX7aAdLaGgIR0CKeh9rGipOdX2UKGgGR8BR0X1WbPQfaAdLWWgIR0CKelNKRMewdX2UKGgGR8BPNL1M/QjVaAdLQWgIR0CKepsAvL5idX2UKGgGR8BaPvFefI0ZaAdLmmgIR0CKe0znA6+4dX2UKGgGR8BbG/IKc/dJaAdLamgIR0CKe0hkAggYdX2UKGgGR8BWCJOzposaaAdLa2gIR0CKe5o2XLNfdX2UKGgGR8BQOBhDw6QvaAdLTWgIR0CKe68Djin6dX2UKGgGR8BVJpOafBepaAdLXmgIR0CKe8LIgeRxdX2UKGgGR8Ba02NR3u/laAdLS2gIR0CKe9IS13MZdX2UKGgGR8BTXeaOPvKEaAdLUGgIR0CKe+oKD017dX2UKGgGR8BYi0gGKQ7taAdLbWgIR0CKfAiDdxhldX2UKGgGR8BPpMGPgeijaAdLWmgIR0CKfDta6jFidX2UKGgGR8BaeZn13+uOaAdLZ2gIR0CKfMmOU+s6dX2UKGgGR8Bko0Lx7RfGaAdLnGgIR0CKfYqsEJSjdX2UKGgGR8BmxUDKYAsDaAdLXWgIR0CKffMg2ZRbdX2UKGgGR8BTygHZ9NN8aAdLfmgIR0CKfmmR/3FldX2UKGgGR8BZpNpdrwfAaAdLi2gIR0CKfp69kBjndX2UKGgGR8BW3Fe8f3evaAdLVGgIR0CKfuADJU5udX2UKGgGR8BKB2vjfek6aAdLhGgIR0CKfuysS00FdX2UKGgGR8BaLjn/1g6VaAdLXWgIR0CKfxK7I1cddX2UKGgGR8BbwkgjhUBGaAdLaWgIR0CKfyubI91VdX2UKGgGR8BayP+0gKWtaAdLjGgIR0CKf2g+yJKrdX2UKGgGR8BCpSB06o2oaAdLV2gIR0CKf3mZE2HddX2UKGgGR8BXdUVvddmhaAdLcWgIR0CKf3w1BMSLdX2UKGgGR8A/oR02cawVaAdLYmgIR0CKf7FKkEcLdX2UKGgGR8BZkUD+zdDZaAdLZWgIR0CKf6vN/vv0dX2UKGgGR8BTDCidrftQaAdLc2gIR0CKf+vexfOVdX2UKGgGR8BUPy9RJmNBaAdLUGgIR0CKf9eWOZLJdX2UKGgGR8BVVrNjbzshaAdLbmgIR0CKf91tfoicdX2UKGgGR8BH0HsTnJT3aAdLSWgIR0CKgOfYBeXzdX2UKGgGR8BSaHTRYzSDaAdLXGgIR0CKgSPSUkfLdX2UKGgGR8A/689fTkQxaAdLV2gIR0CKgZMGHHmzdX2UKGgGR8BPGJK8L8aXaAdLdmgIR0CKgb+hGpdbdX2UKGgGR8Akarfcer+6aAdLRmgIR0CKgcf/3nIRdX2UKGgGR8A7FI1LrX18aAdLXGgIR0CKgiDaoMrmdX2UKGgGR8BXRIis4ku6aAdLYGgIR0CKghknTiKjdX2UKGgGR8BWWf8IiTt+aAdLYGgIR0CKgtbUPQOXdX2UKGgGR8Bdx5+tr9EUaAdLWGgIR0CKgsbo8p1BdX2UKGgGR8BUwStV7x/eaAdLdGgIR0CKgtGWD6FedX2UKGgGR8BTfGoWHk92aAdLXmgIR0CKgvWfbsWwdX2UKGgGR8BgGpBE8aGYaAdLc2gIR0CKg3paiblSdX2UKGgGR8BNYAq3EyckaAdLfGgIR0CKg54u9OARdX2UKGgGR8Bdwhisny/caAdLeWgIR0CKg/kOI68ydX2UKGgGR8BLbaJqIrOJaAdLiWgIR0CKhAaMJhOQdX2UKGgGR8BGQufmLcbjaAdLjWgIR0CKg+0rK/21dX2UKGgGR8BVoXC9AX2vaAdLSmgIR0CKhCIpH7P6dX2UKGgGR8BaOIbjtG/faAdLYWgIR0CKhD+wTufFdX2UKGgGR8BN6uc+aBqcaAdLZWgIR0CKhJKEFnqWdX2UKGgGR8BXTPZM+NcXaAdLZmgIR0CKhSkLQXyidX2UKGgGR8BQxEWqLjxTaAdLS2gIR0CKhU1tO2y+dX2UKGgGR8BZSXazu4PPaAdLa2gIR0CKhbgBLf1pdX2UKGgGR8BW3nJ9y926aAdLc2gIR0CKhhyDqW1MdX2UKGgGR8BV9gXZXdTHaAdLf2gIR0CKhipZwGW2dX2UKGgGR8BSc55zHS4OaAdLX2gIR0CKhhF8XvYwdX2UKGgGR8BKT68Yht+DaAdLQWgIR0CKhiqm0mdBdX2UKGgGR8BTPvqTr3TNaAdLUmgIR0CKhlJcPe54dX2UKGgGR8Ba0a6FuejEaAdLaWgIR0CKhnjxTbWVdX2UKGgGR8Baky2+fywwaAdLWWgIR0CKhwqbSZ0CdX2UKGgGR8BLu8WCVbA2aAdLVmgIR0CKhysOoYNzdX2UKGgGR8BWcmE4//vOaAdLfGgIR0CKhzFSbYsedX2UKGgGR8BGILhBJI1+aAdLfmgIR0CKh+dNFjNIdX2UKGgGR8BSOVPWQOnVaAdLeWgIR0CKiBSro4dZdX2UKGgGR8BWfj3/Pw/gaAdLSWgIR0CKiD2t+1BudX2UKGgGR8BO8zkhib2EaAdLbmgIR0CKiFuG9HtndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02256deec9d41cf8968f293dc9d88be6d0ae38edd34bb69b9232f9dc4ac8b68f
3
+ size 147931
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eed4e9aa7a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eed4e9aa830>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eed4e9aa8c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eed4e9aa950>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eed4e9aa9e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eed4e9aaa70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eed4e9aab00>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eed4e9aab90>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eed4e9aac20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eed4e9aacb0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eed4e9aad40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eed4e9aadd0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7eed4eb3e280>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 114688,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1704028796507483225,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2f5z7IYoI/4tqtPuuQV799tKQ+EktrPQAAAAAAAAAAQw6SPoUHeT+bFNc+ZB46v1FAo7wDK2e9AAAAAAAAAAAzPeC8hgqeP2B6Xr7WzSS/2SoKPNsl0rwAAAAAAAAAAE0QDD1E9ro/JUIxP2+J3T5LjNO86iCWvQAAAAAAAAAARg0tPpcTLT/CkQA/wihVv5t30L62Cbk9AAAAAAAAAAAlVK++ZhicP5nTCL+6Jj6/nRlsvNrnDL4AAAAAAAAAADPDVL51hWg/FT7bvmVdKL971V++zv5/vgAAAAAAAAAAMPGGPlzRiz+E0yY/Ky81vyg5K71e1Dk+AAAAAAAAAABj1Xg/Q3ISPaWgPT9q2KS/Iz8fP5LcjT4AAAAAAAAAAJoHmLy+Bbs/WbiYvgdRnD4e8i88ZsKCvAAAAAAAAAAABnK9vr83oD9QDAi/BrHovtwm2739/Xa+AAAAAAAAAABNPmY9CiKrPzMLuD6JdqG+HSicvRKMmL0AAAAAAAAAAAC8ojz8H4g/dl4hPXkjHr8bBfg9E/S9PAAAAAAAAAAA4ABxviMCDD9LPHK+c0ZGv/2+XD0+wwo9AAAAAAAAAAD9Grs+15sPP+LesD5Wolq/8sb6PuYphz4AAAAAAAAAAOAKor6t+Bi98pzJvjtDtr+KpsE8JW3PvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.1468799999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFOUd/axoqWMAWyUS1mMAXSUR0CKcYGRFI/adX2UKGgGR8BbsYXfqHGkaAdLWGgIR0CKcZ9QXQ+mdX2UKGgGR8BZkOieumrKaAdLgmgIR0CKcc+cpb2UdX2UKGgGR8BW0vPszEaVaAdLT2gIR0CKcjF9a2WqdX2UKGgGR8BXGQevIOpbaAdLO2gIR0CKckvJzT4MdX2UKGgGR8BX7U2gnMMaaAdLc2gIR0CKcmhcqvvCdX2UKGgGR8BcbZbhWHUMaAdLgmgIR0CKc7gKF7D3dX2UKGgGR8BQmZAprk8zaAdLdmgIR0CKc8mpEQXidX2UKGgGR8BAAM5GSZBtaAdLiGgIR0CKc+Q0XP7fdX2UKGgGR8BEvrxAjY7JaAdLbWgIR0CKdARU3n6mdX2UKGgGR8BYdxEWqLjxaAdLgmgIR0CKdFN34bjtdX2UKGgGR8BOoseOn2qUaAdLXGgIR0CKdDfWMCLddX2UKGgGR8BfmD2alUIcaAdLUGgIR0CKdFo9s7+2dX2UKGgGR8BGAGO+7Dl6aAdLpWgIR0CKdHNX5nDjdX2UKGgGR8BXXZYPoV2zaAdLcWgIR0CKdH7vXsgMdX2UKGgGR8BXBSlBQemvaAdLbmgIR0CKdTWU8mrsdX2UKGgGR8BgQ/eFcpsoaAdLT2gIR0CKdTBwdbPhdX2UKGgGR8BaY2zWwu/UaAdLUmgIR0CKdTH0btJGdX2UKGgGR8BWxQb6xgRcaAdLdGgIR0CKdZ8sMAmzdX2UKGgGR8BXOIi1RceKaAdLc2gIR0CKdeSQo1DTdX2UKGgGR8Ba9UuHvc8DaAdLd2gIR0CKdm/8EV32dX2UKGgGR8BCNeo1k1/EaAdLS2gIR0CKdrQ0GeMAdX2UKGgGR8BT92NipeeGaAdLT2gIR0CKdzJf6XSjdX2UKGgGR8BohdZDArQPaAdLqGgIR0CKd6ItUXHjdX2UKGgGR8BRrsnVoYelaAdLY2gIR0CKd+9cKPXDdX2UKGgGR8BROBkRSP2gaAdLUGgIR0CKeC1Q66redX2UKGgGR8BYpi1E3KjjaAdLfGgIR0CKeEmpEQXidX2UKGgGR8BgTt0A93bFaAdLgWgIR0CKeGiKR+z/dX2UKGgGR8BYHEaAFxGUaAdLW2gIR0CKeImKqGUOdX2UKGgGR8BT1gUDdP+GaAdLgGgIR0CKeRLZi/fwdX2UKGgGR8BD2bfHggoxaAdLgWgIR0CKeSkTpPhydX2UKGgGR8BgOU0Nz8xcaAdLY2gIR0CKeTM/yGzsdX2UKGgGR8BogCJMxoIwaAdLjGgIR0CKeUipNsWPdX2UKGgGR8Bg7UhHLA58aAdLcWgIR0CKeVTyauwHdX2UKGgGR8BUNYxk/bCaaAdLoWgIR0CKeayad+XrdX2UKGgGR8BbyqCcwxnGaAdLWmgIR0CKeevyLAHndX2UKGgGR8BoWGeHzpX7aAdLaGgIR0CKeh9rGipOdX2UKGgGR8BR0X1WbPQfaAdLWWgIR0CKelNKRMewdX2UKGgGR8BPNL1M/QjVaAdLQWgIR0CKepsAvL5idX2UKGgGR8BaPvFefI0ZaAdLmmgIR0CKe0znA6+4dX2UKGgGR8BbG/IKc/dJaAdLamgIR0CKe0hkAggYdX2UKGgGR8BWCJOzposaaAdLa2gIR0CKe5o2XLNfdX2UKGgGR8BQOBhDw6QvaAdLTWgIR0CKe68Djin6dX2UKGgGR8BVJpOafBepaAdLXmgIR0CKe8LIgeRxdX2UKGgGR8Ba02NR3u/laAdLS2gIR0CKe9IS13MZdX2UKGgGR8BTXeaOPvKEaAdLUGgIR0CKe+oKD017dX2UKGgGR8BYi0gGKQ7taAdLbWgIR0CKfAiDdxhldX2UKGgGR8BPpMGPgeijaAdLWmgIR0CKfDta6jFidX2UKGgGR8BaeZn13+uOaAdLZ2gIR0CKfMmOU+s6dX2UKGgGR8Bko0Lx7RfGaAdLnGgIR0CKfYqsEJSjdX2UKGgGR8BmxUDKYAsDaAdLXWgIR0CKffMg2ZRbdX2UKGgGR8BTygHZ9NN8aAdLfmgIR0CKfmmR/3FldX2UKGgGR8BZpNpdrwfAaAdLi2gIR0CKfp69kBjndX2UKGgGR8BW3Fe8f3evaAdLVGgIR0CKfuADJU5udX2UKGgGR8BKB2vjfek6aAdLhGgIR0CKfuysS00FdX2UKGgGR8BaLjn/1g6VaAdLXWgIR0CKfxK7I1cddX2UKGgGR8BbwkgjhUBGaAdLaWgIR0CKfyubI91VdX2UKGgGR8BayP+0gKWtaAdLjGgIR0CKf2g+yJKrdX2UKGgGR8BCpSB06o2oaAdLV2gIR0CKf3mZE2HddX2UKGgGR8BXdUVvddmhaAdLcWgIR0CKf3w1BMSLdX2UKGgGR8A/oR02cawVaAdLYmgIR0CKf7FKkEcLdX2UKGgGR8BZkUD+zdDZaAdLZWgIR0CKf6vN/vv0dX2UKGgGR8BTDCidrftQaAdLc2gIR0CKf+vexfOVdX2UKGgGR8BUPy9RJmNBaAdLUGgIR0CKf9eWOZLJdX2UKGgGR8BVVrNjbzshaAdLbmgIR0CKf91tfoicdX2UKGgGR8BH0HsTnJT3aAdLSWgIR0CKgOfYBeXzdX2UKGgGR8BSaHTRYzSDaAdLXGgIR0CKgSPSUkfLdX2UKGgGR8A/689fTkQxaAdLV2gIR0CKgZMGHHmzdX2UKGgGR8BPGJK8L8aXaAdLdmgIR0CKgb+hGpdbdX2UKGgGR8Akarfcer+6aAdLRmgIR0CKgcf/3nIRdX2UKGgGR8A7FI1LrX18aAdLXGgIR0CKgiDaoMrmdX2UKGgGR8BXRIis4ku6aAdLYGgIR0CKghknTiKjdX2UKGgGR8BWWf8IiTt+aAdLYGgIR0CKgtbUPQOXdX2UKGgGR8Bdx5+tr9EUaAdLWGgIR0CKgsbo8p1BdX2UKGgGR8BUwStV7x/eaAdLdGgIR0CKgtGWD6FedX2UKGgGR8BTfGoWHk92aAdLXmgIR0CKgvWfbsWwdX2UKGgGR8BgGpBE8aGYaAdLc2gIR0CKg3paiblSdX2UKGgGR8BNYAq3EyckaAdLfGgIR0CKg54u9OARdX2UKGgGR8Bdwhisny/caAdLeWgIR0CKg/kOI68ydX2UKGgGR8BLbaJqIrOJaAdLiWgIR0CKhAaMJhOQdX2UKGgGR8BGQufmLcbjaAdLjWgIR0CKg+0rK/21dX2UKGgGR8BVoXC9AX2vaAdLSmgIR0CKhCIpH7P6dX2UKGgGR8BaOIbjtG/faAdLYWgIR0CKhD+wTufFdX2UKGgGR8BN6uc+aBqcaAdLZWgIR0CKhJKEFnqWdX2UKGgGR8BXTPZM+NcXaAdLZmgIR0CKhSkLQXyidX2UKGgGR8BQxEWqLjxTaAdLS2gIR0CKhU1tO2y+dX2UKGgGR8BZSXazu4PPaAdLa2gIR0CKhbgBLf1pdX2UKGgGR8BW3nJ9y926aAdLc2gIR0CKhhyDqW1MdX2UKGgGR8BV9gXZXdTHaAdLf2gIR0CKhipZwGW2dX2UKGgGR8BSc55zHS4OaAdLX2gIR0CKhhF8XvYwdX2UKGgGR8BKT68Yht+DaAdLQWgIR0CKhiqm0mdBdX2UKGgGR8BTPvqTr3TNaAdLUmgIR0CKhlJcPe54dX2UKGgGR8Ba0a6FuejEaAdLaWgIR0CKhnjxTbWVdX2UKGgGR8Baky2+fywwaAdLWWgIR0CKhwqbSZ0CdX2UKGgGR8BLu8WCVbA2aAdLVmgIR0CKhysOoYNzdX2UKGgGR8BWcmE4//vOaAdLfGgIR0CKhzFSbYsedX2UKGgGR8BGILhBJI1+aAdLfmgIR0CKh+dNFjNIdX2UKGgGR8BSOVPWQOnVaAdLeWgIR0CKiBSro4dZdX2UKGgGR8BWfj3/Pw/gaAdLSWgIR0CKiD2t+1BudX2UKGgGR8BO8zkhib2EaAdLbmgIR0CKiFuG9HtndWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 28,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b715884e12372cdc0d060a4e442755ecaf7d42785de93d5f1a283f0b4ef96e28
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b27d44e462322dbed15dae51709dcb1d9df3e47e40b5d2370874393c33b40c9
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (204 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -160.74854508177432, "std_reward": 24.098619351904958, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-31T13:25:17.595123"}