File size: 6,359 Bytes
43226e0 3f2ad09 d5f2771 3f2ad09 c8fb7cc 3f2ad09 c8fb7cc 3f2ad09 43226e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
language:
- ja
base_model: cl-nagoya/ruri-pt-base
tags:
- sentence-similarity
- feature-extraction
license: apache-2.0
datasets:
- cl-nagoya/ruri-dataset-ft
pipeline_tag: sentence-similarity
---
このモデルは、[text-embeddings-inference
](https://github.com/huggingface/text-embeddings-inference) (TEI) で、mecab / unidic などを用いた日本語Tokenizerのモデルを、dummy の tokenizer.json を用いて**無理やり動かす** 方法のサンプルです。
dummy の tokenizer.json を用意することで、とりあえず TEI を起動させ、推論時には手元のPython環境で tokenizer した token_ids を送ります。
詳しくは、[text-embeddings-inference で日本語トークナイザーモデルの推論をする](https://secon.dev/entry/2024/09/30/160000/)を参照ください。
---
大元のモデルは [cl-nagoya/ruri-base](https://huggingface.co/cl-nagoya/ruri-base) です。以下のモデルカードは、大元の ruri-base の物です。
---
# Ruri: Japanese General Text Embeddings
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers fugashi sentencepiece unidic-lite
```
Then you can load this model and run inference.
```python
import torch.nn.functional as F
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cl-nagoya/ruri-base")
# Don't forget to add the prefix "クエリ: " for query-side or "文章: " for passage-side texts.
sentences = [
"クエリ: 瑠璃色はどんな色?",
"文章: 瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。",
"クエリ: ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?",
"文章: ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。",
]
embeddings = model.encode(sentences, convert_to_tensor=True)
print(embeddings.size())
# [4, 768]
similarities = F.cosine_similarity(embeddings.unsqueeze(0), embeddings.unsqueeze(1), dim=2)
print(similarities)
# [[1.0000, 0.9421, 0.6844, 0.7167],
# [0.9421, 1.0000, 0.6626, 0.6863],
# [0.6844, 0.6626, 1.0000, 0.8785],
# [0.7167, 0.6863, 0.8785, 1.0000]]
```
## Benchmarks
### JMTEB
Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
|Model|#Param.|Avg.|Retrieval|STS|Classfification|Reranking|Clustering|PairClassification|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|[cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base)|111M|68.56|49.64|82.05|73.47|91.83|51.79|62.57|
|[cl-nagoya/sup-simcse-ja-large](https://huggingface.co/cl-nagoya/sup-simcse-ja-large)|337M|66.51|37.62|83.18|73.73|91.48|50.56|62.51|
|[cl-nagoya/unsup-simcse-ja-base](https://huggingface.co/cl-nagoya/unsup-simcse-ja-base)|111M|65.07|40.23|78.72|73.07|91.16|44.77|62.44|
|[cl-nagoya/unsup-simcse-ja-large](https://huggingface.co/cl-nagoya/unsup-simcse-ja-large)|337M|66.27|40.53|80.56|74.66|90.95|48.41|62.49|
|[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja)|133M|70.44|59.02|78.71|76.82|91.90|49.78|66.39|
||||||||||
|[sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE)|472M|64.70|40.12|76.56|72.66|91.63|44.88|62.33|
|[intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)|118M|69.52|67.27|80.07|67.62|93.03|46.91|62.19|
|[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)|278M|70.12|68.21|79.84|69.30|92.85|48.26|62.26|
|[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)|560M|71.65|70.98|79.70|72.89|92.96|51.24|62.15|
||||||||||
|OpenAI/text-embedding-ada-002|-|69.48|64.38|79.02|69.75|93.04|48.30|62.40|
|OpenAI/text-embedding-3-small|-|70.86|66.39|79.46|73.06|92.92|51.06|62.27|
|OpenAI/text-embedding-3-large|-|73.97|74.48|82.52|77.58|93.58|53.32|62.35|
||||||||||
|[Ruri-Small](https://huggingface.co/cl-nagoya/ruri-small)|68M|71.53|69.41|82.79|76.22|93.00|51.19|62.11|
|[**Ruri-Base**](https://huggingface.co/cl-nagoya/ruri-base) (this model)|111M|71.91|69.82|82.87|75.58|92.91|54.16|62.38|
|[Ruri-Large](https://huggingface.co/cl-nagoya/ruri-large)|337M|73.31|73.02|83.13|77.43|92.99|51.82|62.29|
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [cl-nagoya/ruri-pt-base](https://huggingface.co/cl-nagoya/ruri-pt-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768
- **Similarity Function:** Cosine Similarity
- **Language:** Japanese
- **License:** Apache 2.0
- **Paper:** https://arxiv.org/abs/2409.07737
<!-- - **Training Dataset:** Unknown -->
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu118
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
```bibtex
@misc{
Ruri,
title={{Ruri: Japanese General Text Embeddings}},
author={Hayato Tsukagoshi and Ryohei Sasano},
year={2024},
eprint={2409.07737},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.07737},
}
```
## License
This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|