import numpy as np import torch import torch.distributed as dist import torch.nn as nn from einops import rearrange from .configuration_stdit import STDiTConfig from .layers import ( STDiTBlock, CaptionEmbedder, PatchEmbed3D, T2IFinalLayer, TimestepEmbedder, ) from .utils import ( approx_gelu, get_1d_sincos_pos_embed, get_2d_sincos_pos_embed, ) from transformers import PreTrainedModel class STDiT(PreTrainedModel): config_class = STDiTConfig def __init__( self, config ): super().__init__(config) self.pred_sigma = config.pred_sigma self.in_channels = config.in_channels self.out_channels = config.in_channels * 2 if config.pred_sigma else config.in_channels self.hidden_size = config.hidden_size self.patch_size = config.patch_size self.input_size = config.input_size num_patches = np.prod([config.input_size[i] // config.patch_size[i] for i in range(3)]) self.num_patches = num_patches self.num_temporal = config.input_size[0] // config.patch_size[0] self.num_spatial = num_patches // self.num_temporal self.num_heads = config.num_heads self.no_temporal_pos_emb = config.no_temporal_pos_emb self.depth = config.depth self.mlp_ratio = config.mlp_ratio self.enable_flash_attn = config.enable_flash_attn self.enable_layernorm_kernel = config.enable_layernorm_kernel self.space_scale = config.space_scale self.time_scale = config.time_scale self.register_buffer("pos_embed", self.get_spatial_pos_embed()) self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed()) self.x_embedder = PatchEmbed3D(config.patch_size, config.in_channels, config.hidden_size) self.t_embedder = TimestepEmbedder(config.hidden_size) self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True)) self.y_embedder = CaptionEmbedder( in_channels=config.caption_channels, hidden_size=config.hidden_size, uncond_prob=config.class_dropout_prob, act_layer=approx_gelu, token_num=config.model_max_length, ) drop_path = [x.item() for x in torch.linspace(0, config.drop_path, config.depth)] self.blocks = nn.ModuleList( [ STDiTBlock( self.hidden_size, self.num_heads, mlp_ratio=self.mlp_ratio, drop_path=drop_path[i], enable_flash_attn=self.enable_flash_attn, enable_layernorm_kernel=self.enable_layernorm_kernel, enable_sequence_parallelism=config.enable_sequence_parallelism, d_t=self.num_temporal, d_s=self.num_spatial, ) for i in range(self.depth) ] ) self.final_layer = T2IFinalLayer(config.hidden_size, np.prod(self.patch_size), self.out_channels) # init model self.initialize_weights() self.initialize_temporal() if config.freeze is not None: assert config.freeze in ["not_temporal", "text"] if config.freeze == "not_temporal": self.freeze_not_temporal() elif config.freeze == "text": self.freeze_text() # sequence parallel related configs self.enable_sequence_parallelism = config.enable_sequence_parallelism if config.enable_sequence_parallelism: self.sp_rank = dist.get_rank(get_sequence_parallel_group()) else: self.sp_rank = None def forward(self, x, timestep, y, mask=None): """ Forward pass of STDiT. Args: x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W] timestep (torch.Tensor): diffusion time steps; of shape [B] y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C] mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token] Returns: x (torch.Tensor): output latent representation; of shape [B, C, T, H, W] """ x = x.to(self.final_layer.linear.weight.dtype) timestep = timestep.to(self.final_layer.linear.weight.dtype) y = y.to(self.final_layer.linear.weight.dtype) # embedding x = self.x_embedder(x) # [B, N, C] x = rearrange(x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial) x = x + self.pos_embed x = rearrange(x, "B T S C -> B (T S) C") # shard over the sequence dim if sp is enabled if self.enable_sequence_parallelism: x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down") t = self.t_embedder(timestep, dtype=x.dtype) # [B, C] t0 = self.t_block(t) # [B, C] y = self.y_embedder(y, self.training) # [B, 1, N_token, C] if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) # blocks for i, block in enumerate(self.blocks): if i == 0: if self.enable_sequence_parallelism: tpe = torch.chunk( self.pos_embed_temporal, dist.get_world_size(get_sequence_parallel_group()), dim=1 )[self.sp_rank].contiguous() else: tpe = self.pos_embed_temporal else: tpe = None x = block(x, y, t0, y_lens, tpe) # x = auto_grad_checkpoint(block, x, y, t0, y_lens, tpe) if self.enable_sequence_parallelism: x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up") # x.shape: [B, N, C] # final process x = self.final_layer(x, t) # [B, N, C=T_p * H_p * W_p * C_out] x = self.unpatchify(x) # [B, C_out, T, H, W] # cast to float32 for better accuracy x = x.to(torch.float32) return x def unpatchify(self, x): """ Args: x (torch.Tensor): of shape [B, N, C] Return: x (torch.Tensor): of shape [B, C_out, T, H, W] """ N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)] T_p, H_p, W_p = self.patch_size x = rearrange( x, "B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)", N_t=N_t, N_h=N_h, N_w=N_w, T_p=T_p, H_p=H_p, W_p=W_p, C_out=self.out_channels, ) return x def unpatchify_old(self, x): c = self.out_channels t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] pt, ph, pw = self.patch_size x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) x = rearrange(x, "n t h w r p q c -> n c t r h p w q") imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) return imgs def get_spatial_pos_embed(self, grid_size=None): if grid_size is None: grid_size = self.input_size[1:] pos_embed = get_2d_sincos_pos_embed( self.hidden_size, (grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]), scale=self.space_scale, ) pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) return pos_embed def get_temporal_pos_embed(self): pos_embed = get_1d_sincos_pos_embed( self.hidden_size, self.input_size[0] // self.patch_size[0], scale=self.time_scale, ) pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) return pos_embed def freeze_not_temporal(self): for n, p in self.named_parameters(): if "attn_temp" not in n: p.requires_grad = False def freeze_text(self): for n, p in self.named_parameters(): if "cross_attn" in n: p.requires_grad = False def initialize_temporal(self): for block in self.blocks: nn.init.constant_(block.attn_temp.proj.weight, 0) nn.init.constant_(block.attn_temp.proj.bias, 0) def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) nn.init.normal_(self.t_block[1].weight, std=0.02) # Initialize caption embedding MLP: nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) # Zero-out adaLN modulation layers in PixArt blocks: for block in self.blocks: nn.init.constant_(block.cross_attn.proj.weight, 0) nn.init.constant_(block.cross_attn.proj.bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0)