File size: 2,024 Bytes
5a913a1 d34f045 4f6dc37 5a913a1 e5e52ee 5a913a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
---
# Grok-1 (PyTorch Version)
This repository contains the model and weights of the **torch version** of Grok-1 open-weights model. You could find a complete example code of using the torch-version Grok-1 in [ColossalAI GitHub Repository](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/grok-1). We also applies parallelism techniques from ColossalAI framework (Tensor Parallelism for now) to accelerate the inference.
You could find the original weights released by [xAI](https://x.ai/blog) in [Hugging Face](https://huggingface.co/xai-org/grok-1) and the original model in the Grok open release [GitHub Repository](https://github.com/xai-org/grok-1/tree/main).
## Conversion
We translated the original modeling written in JAX into PyTorch version, and converted the weights by mapping tensor files with parameter keys, de-quantizing the tensors with corresponding packed scales, and save to checkpoint file with torch APIs.
The original tokenizer is supposed to be used (i.e. `tokenizer.model` in [GitHub Repository](https://github.com/xai-org/grok-1/tree/main)) with the torch-version model.
## Usage
```python
import torch
from transformers import AutoModelForCausalLM
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained(
"hpcaitech/grok-1",
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.bfloat16,
)
sp = SentencePieceProcessor(model_file="tokenizer.model")
text = "Replace this with your text"
input_ids = sp.encode(text)
input_ids = torch.tensor([input_ids]).cuda()
attention_mask = torch.ones_like(input_ids)
generate_kwargs = {} # Add any additional args if you want
inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
**generate_kwargs,
}
outputs = model.generate(**inputs)
```
Note: A multi-GPU machine is required to test the model with the example code (For now, a 8x80G multi-GPU machine is required).
|