--- language: en widget: - text: "I love AutoTrain 🤗" datasets: - hsaglamlar/autotrain-data-stress_v2 co2_eq_emissions: 2.7282806494855265 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1178743973 - CO2 Emissions (in grams): 2.7282806494855265 ## Validation Metrics - Loss: 0.431733638048172 - Accuracy: 0.7976190476190477 - Precision: 0.6918918918918919 - Recall: 0.8205128205128205 - AUC: 0.8952141608391608 - F1: 0.7507331378299119 ## Usage This model finds self-reported stress from txt. You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/hsaglamlar/autotrain-stress_v2-1178743973 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("hsaglamlar/autotrain-stress_v2-1178743973", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```