--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - ArtFair/diarizers_dataset_70-15-15 model-index: - name: fine_tuned_segmentation-3.0_1e-5_32 results: [] --- # fine_tuned_segmentation-3.0_1e-5_32 This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the ArtFair/diarizers_dataset_70-15-15 default dataset. It achieves the following results on the evaluation set: - Loss: 0.4908 - Der: 0.3585 - False Alarm: 0.2041 - Missed Detection: 0.1214 - Confusion: 0.0330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.621 | 1.0 | 929 | 0.5601 | 0.3774 | 0.2133 | 0.1279 | 0.0361 | | 0.5472 | 2.0 | 1858 | 0.5149 | 0.3680 | 0.2084 | 0.1254 | 0.0342 | | 0.5353 | 3.0 | 2787 | 0.4969 | 0.3615 | 0.2049 | 0.1234 | 0.0333 | | 0.517 | 4.0 | 3716 | 0.4919 | 0.3590 | 0.2042 | 0.1216 | 0.0331 | | 0.5217 | 5.0 | 4645 | 0.4908 | 0.3585 | 0.2041 | 0.1214 | 0.0330 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.4.1+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2