File size: 6,097 Bytes
9da8c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00e050
84999d8
9da8c80
84999d8
9da8c80
 
e00e050
 
9da8c80
e00e050
9da8c80
 
 
 
 
 
 
e00e050
9da8c80
 
 
e00e050
9da8c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b4c7c
 
 
 
 
 
9da8c80
 
 
 
 
 
 
c9b4c7c
 
9da8c80
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b4c7c
9da8c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e00e050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d2d4f
c9b4c7c
61d2d4f
e00e050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da8c80
 
 
 
e00e050
 
 
 
 
 
9da8c80
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Apache Software License 2.0
#
# Copyright (c) ZenML GmbH 2023. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from os.path import dirname
from typing import Optional

import click
import numpy as np
import sagemaker
from aws_helper import get_sagemaker_session
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from zenml.client import Client

import gradio as gr


@click.command()
@click.option(
    "--tokenizer_name_or_path",
    default=None,
    help="Name or the path of the tokenizer.",
)
@click.option(
    "--model_name_or_path", default=None, help="Name or the path of the model."
)
@click.option(
    "--labels", default="Negative,Positive", help="Comma-separated list of labels."
)
@click.option(
    "--title", default="ZenML NLP Use-Case", help="Title of the Gradio interface."
)
@click.option(
    "--description",
    default="Text Classification - Sentiment Analysis - ZenML - Gradio",
    help="Description of the Gradio interface.",
)
@click.option(
    "--interpretation",
    default="default",
    help="Interpretation mode for the Gradio interface.",
)
@click.option(
    "--examples",
    default="This is an awesome journey, I love it!",
    help="Comma-separated list of examples to show in the Gradio interface.",
)
@click.option(
    "--pipeline_version",
    default="3",
    help="Which version of the deploy pipeline should be deployed.",
    type=int
)
def sentiment_analysis(
    tokenizer_name_or_path: Optional[str],
    model_name_or_path: Optional[str],
    labels: Optional[str],
    title: Optional[str],
    description: Optional[str],
    interpretation: Optional[str],
    pipeline_version: int,
    examples: Optional[str]
):
    """Launches a Gradio interface for sentiment analysis.

    This function launches a Gradio interface for text-classification.
    It loads a model and a tokenizer from the provided paths and uses
    them to predict the sentiment of the input text.

    Args:
        tokenizer_name_or_path (str): Name or the path of the tokenizer.
        model_name_or_path (str): Name or the path of the model.
        labels (str): Comma-separated list of labels.
        title (str): Title of the Gradio interface.
        description (str): Description of the Gradio interface.
        interpretation (str): Interpretation mode for the Gradio interface.
        pipeline_version (int): Which pipeline version to user
        examples (str): Comma-separated list of examples to show in the Gradio interface.
    """
    labels = labels.split(",")

    def preprocess(text: str) -> str:
        """Preprocesses the text.

        Args:
            text (str): Input text.

        Returns:
            str: Preprocessed text.
        """
        new_text = []
        for t in text.split(" "):
            t = "@user" if t.startswith("@") and len(t) > 1 else t
            t = "http" if t.startswith("http") else t
            new_text.append(t)
        return " ".join(new_text)

    def softmax(x):
        e_x = np.exp(x - np.max(x))
        return e_x / e_x.sum(axis=0)

    def analyze_text(inference_type, text):
        if inference_type == "local":
            cur_path = os.path.abspath(dirname(__file__))
            model_path, tokenizer_path = cur_path, cur_path
            if model_name_or_path:
                model_path = f"{dirname(__file__)}/{model_name_or_path}/"
            print(f"Loading model from {model_path}")
            if tokenizer_name_or_path:
                tokenizer_path = f"{dirname(__file__)}/{tokenizer_name_or_path}/"
            print(f"Loading tokenizer from {tokenizer_path}")
            tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
            model = AutoModelForSequenceClassification.from_pretrained(model_path)

            text = preprocess(text)
            encoded_input = tokenizer(text, return_tensors="pt")
            output = model(**encoded_input)
            scores_ = output[0][0].detach().numpy()
            scores_ = softmax(scores_)
            scores = {l: float(s) for (l, s) in zip(labels, scores_)}
        else:
            client = Client()
            latest_run = client.get_pipeline(
                "sentinment_analysis_deploy_pipeline", version=pipeline_version
            ).runs[0]
            endpoint_name = (
                latest_run.steps["deploy_hf_to_sagemaker"]
                .outputs["sagemaker_endpoint_name"]
                .load()
            )

            predictor = sagemaker.Predictor(
                endpoint_name=endpoint_name,
                sagemaker_session=get_sagemaker_session(),
                serializer=sagemaker.serializers.JSONSerializer(),
                deserializer=sagemaker.deserializers.JSONDeserializer(),
            )
            res = predictor.predict({"inputs": text})
            if res[0]["label"] == "LABEL_1":
                scores = {"Negative": 1 - res[0]["score"], "Positive": res[0]["score"]}
            else:
                scores = {"Negative": res[0]["score"], "Positive": 1 - res[0]["score"]}

        return scores

    demo = gr.Interface(
        fn=analyze_text,
        inputs=[
            gr.Dropdown(
                ["local", "sagemaker"], label="Select inference type", value="sagemaker"
            ),
            gr.TextArea("Write your text or tweet here", label="Analyze Text"),
        ],
        outputs=["label"],
        title=title,
        description=description,
        interpretation=interpretation,
    )

    demo.launch(share=True, debug=True)


if __name__ == "__main__":
    sentiment_analysis()