hucruz commited on
Commit
bb91659
·
1 Parent(s): 0dd0989

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: consejo-ner
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # consejo-ner
18
+
19
+ This model is a fine-tuned version of [dccuchile/distilbert-base-spanish-uncased](https://huggingface.co/dccuchile/distilbert-base-spanish-uncased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.3066
22
+ - Precision: 0.7241
23
+ - Recall: 0.6774
24
+ - F1: 0.7
25
+ - Accuracy: 0.9313
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 20
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | No log | 1.0 | 15 | 1.5724 | 0.0 | 0.0 | 0.0 | 0.6985 |
57
+ | No log | 2.0 | 30 | 1.3540 | 0.0 | 0.0 | 0.0 | 0.6985 |
58
+ | No log | 3.0 | 45 | 1.0972 | 0.0 | 0.0 | 0.0 | 0.7099 |
59
+ | No log | 4.0 | 60 | 0.8615 | 0.5833 | 0.2258 | 0.3256 | 0.7672 |
60
+ | No log | 5.0 | 75 | 0.7381 | 0.5 | 0.3548 | 0.4151 | 0.8244 |
61
+ | No log | 6.0 | 90 | 0.6111 | 0.5556 | 0.4839 | 0.5172 | 0.8473 |
62
+ | No log | 7.0 | 105 | 0.5353 | 0.5185 | 0.4516 | 0.4828 | 0.8550 |
63
+ | No log | 8.0 | 120 | 0.4786 | 0.5769 | 0.4839 | 0.5263 | 0.8626 |
64
+ | No log | 9.0 | 135 | 0.4493 | 0.5357 | 0.4839 | 0.5085 | 0.8817 |
65
+ | No log | 10.0 | 150 | 0.4269 | 0.4839 | 0.4839 | 0.4839 | 0.8779 |
66
+ | No log | 11.0 | 165 | 0.3977 | 0.5938 | 0.6129 | 0.6032 | 0.8931 |
67
+ | No log | 12.0 | 180 | 0.3669 | 0.5161 | 0.5161 | 0.5161 | 0.8969 |
68
+ | No log | 13.0 | 195 | 0.3437 | 0.6786 | 0.6129 | 0.6441 | 0.9237 |
69
+ | No log | 14.0 | 210 | 0.3389 | 0.6786 | 0.6129 | 0.6441 | 0.9198 |
70
+ | No log | 15.0 | 225 | 0.3249 | 0.6786 | 0.6129 | 0.6441 | 0.9198 |
71
+ | No log | 16.0 | 240 | 0.3102 | 0.6897 | 0.6452 | 0.6667 | 0.9275 |
72
+ | No log | 17.0 | 255 | 0.3094 | 0.6667 | 0.6452 | 0.6557 | 0.9275 |
73
+ | No log | 18.0 | 270 | 0.3159 | 0.7 | 0.6774 | 0.6885 | 0.9198 |
74
+ | No log | 19.0 | 285 | 0.3094 | 0.7241 | 0.6774 | 0.7 | 0.9313 |
75
+ | No log | 20.0 | 300 | 0.3066 | 0.7241 | 0.6774 | 0.7 | 0.9313 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.26.1
81
+ - Pytorch 1.13.1+cu116
82
+ - Datasets 2.9.0
83
+ - Tokenizers 0.13.2