hucruz commited on
Commit
73afcf7
·
1 Parent(s): f9645b9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: custom-ner-model2
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # custom-ner-model2
18
+
19
+ This model is a fine-tuned version of [dccuchile/distilbert-base-spanish-uncased](https://huggingface.co/dccuchile/distilbert-base-spanish-uncased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2050
22
+ - Precision: 0.8542
23
+ - Recall: 0.8817
24
+ - F1: 0.8677
25
+ - Accuracy: 0.9595
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 20
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | No log | 1.0 | 105 | 0.5185 | 0.5840 | 0.5484 | 0.5656 | 0.8596 |
57
+ | No log | 2.0 | 210 | 0.3212 | 0.7365 | 0.7312 | 0.7338 | 0.9050 |
58
+ | No log | 3.0 | 315 | 0.2440 | 0.8123 | 0.8065 | 0.8094 | 0.9389 |
59
+ | No log | 4.0 | 420 | 0.2186 | 0.8014 | 0.8100 | 0.8057 | 0.9431 |
60
+ | 0.4107 | 5.0 | 525 | 0.1911 | 0.8481 | 0.8602 | 0.8541 | 0.9516 |
61
+ | 0.4107 | 6.0 | 630 | 0.1931 | 0.8235 | 0.8530 | 0.8380 | 0.9546 |
62
+ | 0.4107 | 7.0 | 735 | 0.1720 | 0.8368 | 0.8638 | 0.8501 | 0.9570 |
63
+ | 0.4107 | 8.0 | 840 | 0.1858 | 0.8385 | 0.8746 | 0.8561 | 0.9583 |
64
+ | 0.4107 | 9.0 | 945 | 0.1858 | 0.85 | 0.8530 | 0.8515 | 0.9552 |
65
+ | 0.0667 | 10.0 | 1050 | 0.1961 | 0.8526 | 0.8710 | 0.8617 | 0.9564 |
66
+ | 0.0667 | 11.0 | 1155 | 0.1970 | 0.8537 | 0.8781 | 0.8657 | 0.9589 |
67
+ | 0.0667 | 12.0 | 1260 | 0.1865 | 0.8478 | 0.8781 | 0.8627 | 0.9619 |
68
+ | 0.0667 | 13.0 | 1365 | 0.1994 | 0.8379 | 0.8710 | 0.8541 | 0.9583 |
69
+ | 0.0667 | 14.0 | 1470 | 0.1913 | 0.8507 | 0.8781 | 0.8642 | 0.9613 |
70
+ | 0.0274 | 15.0 | 1575 | 0.2064 | 0.8512 | 0.8817 | 0.8662 | 0.9595 |
71
+ | 0.0274 | 16.0 | 1680 | 0.2053 | 0.8478 | 0.8781 | 0.8627 | 0.9601 |
72
+ | 0.0274 | 17.0 | 1785 | 0.2037 | 0.8576 | 0.8853 | 0.8713 | 0.9601 |
73
+ | 0.0274 | 18.0 | 1890 | 0.2056 | 0.8632 | 0.8817 | 0.8723 | 0.9595 |
74
+ | 0.0274 | 19.0 | 1995 | 0.2066 | 0.8571 | 0.8817 | 0.8693 | 0.9601 |
75
+ | 0.0162 | 20.0 | 2100 | 0.2050 | 0.8542 | 0.8817 | 0.8677 | 0.9595 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.26.0
81
+ - Pytorch 1.13.1+cu116
82
+ - Datasets 2.9.0
83
+ - Tokenizers 0.13.2